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1 Introduction

What is choice in mathematics? It is quite natural in our everyday lives; we make the
choice of what to eat for breakfast, where to spend the day, and what time we want to
fall asleep. We have a finite amount of choices to make in our lives, and it is trivial to
say that we can make those choices. However, what about in mathematics? Can we
make infinite choices using logic and numbers without consequence? In this paper, I
will outline an understanding of the Axiom of Choice. I will then delve into how to
justify an axiom, and apply those principles to the Axiom of Choice. I will also ex-
plain various controversial results that arise from its usage, and how they are not so
nonsensical after all. Finally, I will discuss alternate versions of the Axiom of Choice
and argue that we should prefer the weakest conception of it as possible. Before read-
ing this article, please refer to the introduction article Set Theory as the Foundation of
Mathematics with Focus on the Axiom of Choice, also in this issue of Parabola, which
illustrates how set theory provides a foundation for mathematics; this is necessary
historical and mathematical background to understanding axioms, the justification of
axioms, and from where this debate has evolved. For further reading, please refer to
the article Set Theory as the Foundation of Mathematics by Rida Naveed Ilahi.

2 The Axiom of Choice

Choice and Choice Functions

A choice function is a function f such that for all non-empty sets within a set A, f(A′) ∈
A′ when A′ ∈ A. In essence, this allows us to map any set to an element that it contains.
For example, in the set A =

{
{1}, {2, 4, 6}

}
, some choice function can map {1} → 1 and

{2, 4, 6} → 4. The choice function chooses an element from each set within A. If we de-
noted a new set B formed of the elements that the choice function chose (B = {1, 4}),
then B is called a choice set. For a more concrete example, suppose I was walking
through my school, choosing one person from each classroom to represent that class
and writing down each choice I made. My paper containing my choices is my choice
function, and this new group of students I chose is my choice set. For finite sets then,
choice functions are simple - we can explicitly map each non-empty subset to an ele-
ment of each. For infinite sets, the problem becomes more complicated.

1Shreya Sinha is an incoming student at Princeton University and is planning to study mathematics
and computer science.
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The Axiom of Countable Choice states that there exists a choice function for all
countably infinite sets. One example is of the set of all the non-empty subsets of the
natural numbers. A simple choice function can map each subset to the lowest element
it holds [8]. For example, the subset {1, 2, 3} maps to 1, and {4, 17, 23} maps to 4.

The same cannot be said about uncountably infinite sets, as no one has proved that
choice functions exist for all such sets. Indeed, some model theoretic arguments imply
that, for some such sets, no well-defined choice function can be found [8].

Axiom of Choice

The Axiom of Choice states that every set has a choice function, regardless of the car-
dinality of the set. It is the last axiom of the ZFC system (and is represented by the “C”
in ZFC to indicate its inclusion).

To discuss whether the inclusion of the Axiom of Choice in ZFC is valid, I will first
discuss why it is an axiom. Gődel proved that the ZF axioms are consistent with the
Axiom of Choice if ZF is consistent [4], reducing the problem to depend on Gődel’s
Second Incompleteness Theorem and showing that the axioms of ZF cannot be used
to prove the negation of the Axiom of Choice. In 1963, Cohen proved the Axiom’s
independence from ZF [3], showing that the axioms of ZF and the negation of the
Axiom of Choice is a consistent system, which are two obviously contradictory results.
Thus, this axiom is independent from ZF, and is fit to be called an axiom. As such, the
justifications that I will be discuss pertain to its unique nature as an axiom (as opposed
to a theorem).

Types of Motivation for its Inclusion

Before I begin to delve into the details of the Axiom of Choice, we must understand
how axioms are justified. As the basis of our mathematical systems, we cannot mathe-
matically prove the “truth” of an axiom using some other mathematical object; we can
only understand the consistency and soundness of such a system based on the axioms.
Proofs will not work in this context, so justifications are naturally the next-most pow-
erful tools for understanding the arguments for and against the inclusion of axioms
in our mathematical systems. As a result, I will use the types of justifications Gődel
outlined in his 1964 paper, What is Cantor’s Continuum Hypothesis?

The first form of justification Gődel outlines is intrinsic justification, which are con-
cepts or reasons in logic and the underlying mathematics that clearly imply the exis-
tence and truth of axioms [5].

The other type of justification is extrinsic justification, which is proof that the axiom’s
results are consistent with the results produced by the rest of the axioms, and that the
axiom’s results can be proved by the other axioms alone (even if it may be a more
complex proof) [5]. Furthermore, extrinsic justifications do not need their intrinsic
counterparts to qualify an axiom.
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3 Intrinsic Motivation for Including the Axiom of Choice

Due to the nature of axioms, some of our justifications must be pulled from concepts
of what seems “natural” and logical, otherwise known as intrinsic motivations. In
this section, I outline some of these arguments. I use the word “natural” to refer to a
concept that are normal to us in the real world - such as selecting a physical object from
a basket of objects.

The Idea of Choice

One of the most famous thought experiments relating to the Axiom of Choice is one
given by Bertrand Russell. He asked that if you had an infinite number of pairs of
socks - with the left and right socks of each pair clearly distinguishable - could you
find a choice function? The answer is simple: you can always just pick the right sock
of each pair. However, if each sock in each pair are indistinguishable, then how can we
guarantee a well-defined choice function?

The Axiom of Choice allows us to assume that there is one. We cannot write down
all infinite choices of socks we pick explicitly. Instead, the Axiom of Choice states that
there are functions which can make those unlimited arbitrary choices for us per pair
of socks. It seems intuitive that the socks should still be able to chosen from - that for
each pair of socks, we can pick an arbitrary one to place into our new set. The original
set has not intrinsically changed, apart from the loss of right and left labels (and even
those are artificial - not necessarily inherent in socks or shoes). For a finite set of these
pairs of socks, we can randomly pick from pairs to create this set regardless of the
Axiom of Choice. Simply adding pairs to the original set until there are an infinite
amount shouldn’t change our approach. If we can do it for finite sets, then we should
intuitively be able to continue to do it for each successive pair through a function.

Furthermore, mathematicians of all branches use this idea of choice without con-
cern. It is central to fields like analysis, linear algebra, abstract algebra, measure theory,
and general topology. Many proofs involve arbitrary choice in order to prove general
statements and theorems (that are self-evident and intrinsic as well). In these fields,
mathematicians tend to accept ZFC because of the positive consequences it has. It
should be noted that the acceptance and positive usage of ZFC in other branches of
mathematics seems to lend credibility to the Axiom of Choice.

The Iterative Conception of Sets

In the iterative conception of sets, all sets originate from a single set of objects, where
these other sets are some selection of the elements of the original set. A common way of
selecting these objects (and the way most mathematicians use the iterative conception)
is by taking the power set, which is the set of all sets of elements from the original set,
of the previous stage’s set. This is also called the maximal iterative conception of sets,
because it includes all subsets possible to create from the last stage’s set. This is the
conception I will focus on.
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Because of the nature of such a hierarchy, for a set S1 that shows up at stage s1, the
previous set S0 at stage s0 is the choice set for S1. As the power set of S0, S1 has all
the possible subsets of the elements in S0, so for many of the non-joint combinations
of these subsets, their choice set is just S0. Denote the power set of S1 as S2 at stage s2.
The choice set of some combination of the elements in S2 is simply S1.

This has also been described as a “combinatorial understanding of the set-formation
process” [7]. Taking the power set repeatedly allows us to ensure that every combina-
tion of elements exists somewhere in the set, so all of the choice sets exist. Accepting
this combinatorial view of sets allows us to intrinsically justify the Axiom of Choice,
because all choice sets naturally exist for any set of elements.

4 Extrinsic Motivation for Including the Axiom of Choice

If I introduced axioms into a consistent system that then became inconsistent, then one
natural response would be to discard the added axiom because of its consequences.
This is the basis for extrinsic motivation. Just as an axiom that disrupted a seemingly-
good system would be discarded, an axiom that contributes to the seemingly-good
results of a system should be included, especially if those results would be lost without
the axiom. Zermelo agreed that although seemingly subjective, the self-evidence of
axioms must contribute to the validity of mathematical principles [2]. In this section,
I define some of the important and unique consequences of the Axiom of Choice and
explain their significance to mathematics, extrinsically justifying why the Axiom of
Choice’s inclusion is beneficial.

Finite and Infinite Sets

A set is Dedekind-infinite if one can impose a bijection between the elements of some
subset of the set to the elements of the set. Otherwise, this set is considered Dedekind-
finite. The significance of this definition is that it was the first definition that does not
rely on the natural numbers to prove that a set is infinite or finite.

This definition of infinite sets also has intrinsic motivations. No finite set has a bi-
jection to any of its proper subsets - there will always be at least one fewer elements
in the subset than the set. Infinite sets have subsets that are also infinite and are some-
times even in bijective correspondence to the set. Take, for example, the set of natural
numbers N. The function ϕ(n) = 2n from N to the subset of N containing the even
natural numbers is bijective, so, in one sense, there are just as many even numbers as
there are numbers. Another bijective function from N to a subset of N is ϕ(n) = n+ 1.

The Axiom of Choice is necessary here to prove that a set is Dedekind-finite in the
sense that it has a finite number of elements. Without the Axiom of Choice, there is a
model using only ZF that includes an infinite Dedekind-finite set. Here, the Axiom of
Choice strengthens ZF to exclude seemingly contradictory results such as this one.

The intuitiveness of Dedekind’s definition and the proof behind it helps indirectly
support the Axiom of Choice. Thus, the model of set theory with the Axiom of Choice
serves to stop contradictions like infinite Dedekind-finite sets from taking place.
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The Well-Ordering Principle

Another extrinsic motivation for the Axiom of Choice comes from its relation to the
Well-Ordering Principle in set theory. The idea of ordering a collection of objects is
quite a natural one. Perhaps one may want to order them by color, shape, or size. In
this section, I discuss the Well-Ordering Principle: its intrinsic motivations, its extrinsic
motivations, and its relation to the Axiom of Choice.

The Well-Ordering Principle states that every set can be well-ordered. A set is well-
ordered by a strict total order when each non-empty subset of that set has a least element
(i.e., a minimal element). A strict total order refers to one where all pairs of elements
are comparable and ordered against each other. It is established that the Axiom of
Choice is equivalent to the Well-Ordering Principle and either one, if assumed true, can
be used to prove the other. Well-ordering sets requires an infinite number of arbitrary
decisions in choosing the order, and thus invokes the Axiom of Choice. For this reason,
the intuitiveness of well-ordering gives the Axiom of Choice integrity for use, and vice
versa. In this section I will outline justifications for the Well-Ordering Principle and
argue that the strength of the principle lends credibility to the Axiom of Choice.

This principle has extrinsic motivations. One theorem that relies on well-ordering
is the Prime Factorization Theorem (which itself seems self-evident - no two numbers
would use the same factorization because they would then be the same number). This
theorem has powerful consequences itself, as Gődel’s Incompleteness Theorem uses it.
The positive, powerful results of the Prime Factorization Theorem lends credibility to
the well-ordering theorem as reliable and usable.

The Well-Ordering Principle also has intrinsic motivations. It seems natural that
when defining an order to a set, there will be a minimal element - ordered such that its
simply the first of the set. Even if the order function is arbitrary and requires arbitrary
choice, it is inevitable that the first element to be chosen in the order can simply be
called the minimal one.

Thus, the intrinsic and extrinsic motivations of the Well-Ordering Principle not only
lend support to itself, but also its equivalent the Axiom of Choice.

Other Fields of Mathematics

In addition, there are many intuitive and basic results in other mathematical fields that
are either necessary to it or have success. I will list some of the most important and
basic ones that rely on the Axiom of Choice to illustrate the broad applications of the
Axiom of Choice:

Zorn’s Lemma This lemma states that each totally ordered subset of any non-empty,
partially ordered set has a maximal element. It is equivalent to the Axiom of Choice
and the Well-Ordering Principle, and has important applications to linear algebra.

Bases of vector spaces The Axiom of Choice is essential in proving that every vector
space has a basis, which is a fundamental assumption to linear algebra. This is, cru-
cially, also equivalent to Zorn’s Lemma because the maximal linearly independent set
of vectors are the bases for the corresponding vector space.
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Cartesian Product Principle The Cartesian product of a nonempty family of nonempty
sets is nonempty. This principle has intrinsic motivations and is important to set theory.

In addition, there are a few results that have not been proven to exist in a system
without the Axiom of Choice, but have been proven to be false in all known systems
without the Axiom of Choice.

Partition Principle If there is a surjection from a set A to a set B, then there is an
injection from B to A.

Weak Partition Principle Any partition of a set A cannot be strictly larger than A.

These last two have natural intrinsic justifications, and lend credit to the Axiom of
Choice’s acceptance and usage.

5 Paradoxical Results of the Axiom of Choice

One of the main arguments against using the Axiom of Choice centres around the
“paradoxes” that arise from certain usages of the Axiom of Choice. In this section,
I will discuss common issues that the Axiom of Choice seemingly creates.

Types of Paradoxes

To begin, I must explain the main types of paradoxes to allow us to explore how some
of the “contradictions” the Axiom of Choice leads still have truth to them. There are
two that I will focus on: veridical paradoxes and antimonies.

Veridical paradoxes are those that hold some kind of truth - even if it may not be
intuitive. For example, Galileo’s Paradox is a veridical paradox. It states that there are
just as many square numbers as natural numbers. This is true because the function
ϕ(x) = x2 from the set of natural numbers to the set of square numbers is a bijection.
However, this contradicts our intuition since it does not align with our other way to
compare the size of a subset: if the subset is proper, then it lacks elements of the set
containing it and is in this sense smaller than it. For finite sets, these two ways to
compare the size of sets are equivalent; for infinite sets, these ways diverge. (Galileo
concluded that normal comparisons like more or less do not apply to infinite sets).

Antimonies, on the other hand, are paradoxes that have no solutions and are com-
pletely self-contradicting no matter what logical reasoning is used. For example, the
Liar Paradox is one. “I am a liar” is false if the speaker is truthful (and therefore not a
liar), and it is true if the speaker is lying (and is a liar). Both solutions lead to the same
conclusion: the sentence has no truth values that satisfy it.

I will now explore the main paradox that is frequently brought up as an counter-
intuitive consequence of the Axiom of Choice.

6



Banach-Tarski Paradox

The Banach-Tarski Paradox states that if you take any two non-empty, bounded subsets
A and B of R3, then you can divide A into a finite number of subsets that can be moved
by rigid transformations - translations and rotations only - to form B.

A more intuitive equivalent is that if you have a solid 3-dimensional sphere, then
you can decompose it into a finite number of disjoint subsets of points, which can
be put back together in a different way such that one ends with two copies of the
original ball (with one playful exemplifications is that this paradox allows us to turn a
baseball into a sphere as large as the sun). Reassembling the sphere only requires rigid
transformations of the points.

Crucially, this theorem uses the Axiom of Choice. When the sphere is decomposed,
first as a hollow sphere and then extended to the points in the interior, the Axiom of
Choice is invoked to produce that decomposition.

Many physicists and applied mathematicians feel uncomfortable with the impli-
cations of the Banach-Tarski Paradox in the real world. Of course, it is impossible to
physically turn a baseball into a ball the size of the sun. However, it is important to
remember that the Paradox relies on cutting up the sphere into sets that each contain
an infinite number of points - something we cannot do in the real world in regards
to physical matter. The atoms in a baseball are numerous, yet still finite, and so are
the particles that constitute those atoms, presumably. Another crucial detail is that the
paradox does not require us to define a volume to every subset of R3, so the sets we
construct have no volume to preserve [10]. If one wanted to conserve volume, they
could instead work with locales instead of topological spaces [9]. In addition, the idea
of measurement in the proof of the paradox is much different from measurement in
reality. The proof requires cutting the spheres into shapes with infinite sides - which is
impossible with the defined size of atoms and particles in reality.

Furthermore, there is evidence that the Banach-Tarski Paradox has real implications
for our world. Several papers have been published suggesting that because particles
colliding at high energies can become different particles and more in number than
before the collision is linked to the Banach-Tarski Paradox [1].

Thus, it seems that the Banach-Tarski Paradox is a veridical paradox, with elements
of truth regardless of its intuition.

6 Constructivism and Other Views of the Axiom of Choice

There are several ways in which to modify the Axiom of Choice.

Constructive Definition of the Axiom of Choice

Constructivists are mathematicians that believe that for any mathematical object, it is
necessary to construct examples of it in order to prove it exists. It is not enough, as most
mathematicians do, to show assuming a principle’s negation leads to contradiction
(otherwise known as the law of the excluded middle).
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For constructivists, the issue with the Axiom of Choice is that it does not guarantee
us a way to find a choice function for every set (for example, the non-empty subsets of
complex numbers). According to the constructivist definition, “exists” must be inter-
preted the same way as “find” - which implies that the Axiom of Choice is inherently
false [8]. This type of definition leads to the loss of many of the results outlined in
Section 5. Most mathematicians, for that reason, choose not to use this definition.

The Axiom of Countable Choice

Another variant of the Axiom of Choice is the Axiom of Countable Choice. It states that
every set of a countable number of subsets has a choice function. This is a weaker ax-
iom than the Axiom of Choice, but still suffices to prove a few of the results I discussed
earlier (such as all Dedekind-infinite sets are infinite and that the union of countably
many countable sets is countable). However, it is not powerful enough to prove the
Well-Ordering Principle, and thus other results that rest on it (such as the Prime Fac-
torization Theorem), which are still fundamental results. Thus, the Axiom of Choice is
still preferable to Countable Choice.

The Axiom of Dependent Choice

The Axiom of Dependent Choice is another weakened form of the Axiom of Choice.
It states that one may make a countable number of consecutive choices. This axiom
is stronger than the Axiom of Countable Choice and weaker than regular Axiom of
Choice. Indeed, it is implied by normal the Axiom of Choice and implies the Axiom
of Countable Choice but is not implied by the Axiom of Countable Choice [6]. It does
support more results than the Axiom of Countable Choice but fails to allow results
specific to the Axiom of Choice, such as the Banach-Tarski Paradox [6], which, as I
examined earlier, is reasonable and may have consequences in our reality. Thus, I do
not see the Axiom of Dependent Choice as preferable to the Axiom of Choice.

7 Conclusion

I have outlined why the Axiom of Choice should in my view be included with the
Zermelo-Frankel axioms as a preferred system of axioms. I outlined the ideas of choice,
the intrinsic and extrinsic justifications of the Axiom, as well as its far-reaching effects
on other fields of maths that naturally accept it. I described the Banach-Tarski Paradox
that arises in systems that use the Axiom of Choice. Finally, I outlined several common
alternatives to the Axiom of Choice, and argued that the Axiom was preferable to these.
Future results in set theory will more concretely determine the status of the Axiom of
Choice. With the current results, I believe all the positive results and equivalences of
the Axiom of Choice qualify it to be accepted freely with the Zermelo-Frankel Axioms
as a foundation of mathematics.
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