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THE FOUR COLOUR PROBLEM

Whilst very few people doubt that there are exciting
new discoveries awaiting the inspired researcher in Physics, or
Chemistry, or almost any other science, many seem to imagine
that virtually all mathematics has been known for fifty years or
more, This is perhaps partlybecause of the difficulty of explain-
ing briefly to the laymanthe nature and importance of many of the
rather abstruse achievements of twentiethcentury creative math-
ematicians; whereas some of the significance of, say, the discov-
ery of a new antibiotic by a biochemist can be grasped by anyone.

Yet large numbers of easily comprehended unsolved
problems abound in all branches of mathematics. Some of these
problems because of their fundamental nature have attracted the
attention of mathematicians for many years. One which after a
century remains a challenge to pure mathematicians, working in
the branch of mathematics called topology, is known as the four
colour problem.

Makers of atlases colour adjacent countries on maps
with different colours. Countries are regarded as adjacent if they
have apositive length of boundary in common, but not if they touch
only at isolated points. Only maps with a finite number of count-
ries are considered. What is the minimum number of colours re-
quired to achieve such a colouring for a given map? The map of
Australia might be coloured using eight different colours - one for
each state and blue for the sea; but no more than four are really
necessary. In fact, no one has yet succeeded in drawing a map on
a plane, or on a sphere, requiring more than four colours. On
the other hand no one has been able to prove that four colours are
sufficient for every map. An attempt to do so was published in
1879, but eleven years later the English mathematician Heawood
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found an error in the reasoning employed. By revising the argu-
ment he was able to show that five colours are always sufficient.
The problem remains of either improving Heawood's result to four
colours, or of producing a map requiring five colours,

One might suppose that since the problem has proved
so frustrating for maps on a plane or a sphere, it would be quite
unmanageable for maps drawn on a more complicated surface,
such as the surface of a doughnut (a torus, to give it its correct
name). But strangely enough, it is completely solved for this sur-

A, W, X, face. We shall show later
N & il i that no map on the torus re-
quires more than seven col-
ours. Figl shows howto ob-
tain a mapfor whichall sev-
en are required. First fold
the rectangle into a cylinder
by bringing the edge AA into
coincidence with AyAy;, then
A, ik x" b i imagine this cylinder bent
' i round into a complete circle
Fig. 1 so that its (circular) end A} A;
coincides withAyA,. Points labelled with the same letter will now
coincide. Regions bearingthe same number will form one country
onthe resulting torus, and we obtain a map of sevencountries each
of which is adjacent to the other six.

Before outlining a possible method of proving the res-
ults quoted, we dispose of the simple fact that the map colouring
problems on the sphere and plane are equivalent. For, given any
map on a sphere, one mayimagine a small hole made inihe inter-
ior of one country, and the resulting punctured spherical surface
continuously deformed into a plane map (allowing stretching but
not tearing of the surfacel Conversely any plane map may, by
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reversing the process, be represented on a sphere, (The addit-
ional point needed to complete the sphere can at most introduce
one-point contact of non-adjacent countries). We need henceforth
consider only maps on a sphere.

Let us now analyze the structure of maps on any sur-
face. Any ''simply connected map' may be constructed in the fol-
lowing way. A finite number of points, to be called vertices, are
selected onthe surface. Non-intersecting lin~s, to be called edges,
are drawn linking these vertices in sucha way that any vertex can
be reached from any other vertex aloang a chain of edges, every
vertexfterminates at least two edges, andthe regions, or countries,
to be called faces, into which the surface isthus divided are sim-
ply connected. (By a simply connected region we mean one in
which any closed curve can be shrunk down on the face to a point),
In¥Fig 2, A, B, C, D, E, F, G are vertices conneeted by the ed-
ges AB,AC, AD, AE, AF, the loop from B, CD, CG, DE, EF,
FG, which divide the surface of the page into six faces. If the
edge AB were absentthe map would no longer be simply connected

because (i) the vertex B could

not be reached from anyoth-
6 er vertex, and (ii) a closed
curve could bedrawn in face
2, encirecling face 1, which
‘could not be shrunk down to
a point in 2.

e If the edge FG
¥ were absent, the vertex G
wouldterminate less than two edges and the figure would not be a
map under our definition. Note that only two edge end-points co-
incide at the vertex G, whilst three or more coincide at all the
other vertices. Because of this property, G could be omitted and
the edges FGC united to form a single edge FC without essentially
altering the map as far as colouring is concerned.
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An essential step in the proof of Heawood's five colour
theorem is Euler's Formula. This asserts that for any simply
connected map on a sphere, F + V - E = 2, where F is the
number of faces, V the number of vertices, and E the number of
edges. Euler first proved the formula for simple polyhedra - sol-
ids all of whose faces are plane polygons, for example a cube or
a tetrahedron. If the edges of such a solid are replaced by ink
lines andits surface deformed into a sphere,a map of the type we
are considering results.

0
- Euler's Formulais obviously
1 true for a map on a sphere
1 with only two faces, since if
F A 6 the boundary separating them
contains n vertices it also
Fig. 3 has n edges (Fig 3). Mow

suppose we are given a simply connected map on a sphere with F
(>2) faces. Rubbing out an edge which separates two faces, (and
such an edge must exist) will reduce both the number of edges and
the number of faces by one, leaving a network with F + V - E
unchanged. However, such an operation may have left a vertex
which terminates only one edge, and bothvertex and edge must be
deleted before another simply connected map can be obtained.
Proceeding in this fashion we eventually reach the situation of
Fig 3 and since F + V - E was unaltered at each stage, its val-
ue must initially have been 2,

Y it A
: - i ,]' * . For maps drawn on a torus
g v = i the appropriate formula is
: ! ,’ F +V - E < 0. Figs
A'.s.‘“......,.,.._,_-.M.._).(,J.H,, A, shows a simply connected
' map on atorus with one ver -
Fig. 4 tex, two edges, and one face,

Using Euler's Formula we now show that for any sim-
ply connected map on a sphere there is at least one face having
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five or fewer neighbours. For a map with no more than six faces
this statement is trivially true. A map with more than six faces
will be essentially unchanged if all vertices where only two edge

end-points coincide are deleted(e. g. G in Fig. 2). Since eachedge
has two end-points and now at eachvertexthree or more end-points

coincide, 2E 2 3V. Let us suppose that every face has six or
more edges. Then 6F is less than or equal to the number obtain-
ed on counting the edges face by face. Since in this process no
edge is counted more than twice, it follows-that 2E 2 6F. Substi-
tuting V £ 2E/3 and F € E/3 in Euler's Formula, we obtain
9 = F +V - E K E/3 + 2E/3 - E = 0, This contradiction
shows that at least one face has fewer than six edges, and hence
no more than five neighbouring faces.

Exactly the same argument showsthat for maps on the
torus there is always a face with six or fewer neighbours. Using
this we can now show that every map on the torus can be coloured
with seven colours. Assume that every map with fewer than n
faces can be coloured with seven colours, and consider any map
with n faces. One of these has no more than six edges. Delete
one of these (AB say), to obtain a map with
n - 1 faces. Colour this with seven col-
ours in accordance with the assumption, on
six at most being needed for the section
shown in Fig. 5. On restoring the edge AB,
the colour of the original face may now be

Fig. 5 - changed to the seventh colour which has not
been used on its six neighbours. Thus every map with n faces
. may be coloured with only 7 colours.

Since it is obvious that all maps with only seven faces
can be coloured with seven colours, the above argument proves
that the same is true of all maps with eight faces, then all with
nine faces, in fact eventually all maps with any finite number of
faces.
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An identical argument would show that every map on
a sphere could be coloured with six colours. This result can be

improved to five colours in a number of ways. For example,
assume that every map with fewer than n faces can be coloured
with five colours, and consider any map with n faces. Find a

face with no more than five neighbours,
If it has only four (or fewer)neighbours
we proceed as before, deleting one edge.
However, if it has five neighbours, we
can always find two which do not touch.
For example, if as on Fig. 6, face 3
touches face 5, then face 4 certainly
cannot touch face 2, Delete the bound-
aries AB and CD and colour the result-
ing map of n-2 faces with five colours.
On restoring the boundaries the colour
of the face ABDC may now be changed to complete the colouring
of the original rnap', since faces 2 and 4 have the same colour,

and there are at most four colours used on neighbouring faces.

~

Fig. O

You should not assume that topology is concerned
solely with comparatively unimportant mathematical curiosities
such as the four colour problem. It is still a rapidly growing
branch of mathematics whose importance is recognised by both
pure and applied mathematicians.

" Reference:- R. Courant and H. Robbins, What is Mathematics,
Oxford University Press, N. Y., (1951), Ch. V.
(C. Cox)




