COMPETITION PROBLEMS. SOLUTIONS of the

If a_1 , a_2 , and a_3 , are positive numbers whose Junior Q1. sum is two, prove that $a_1a_2 + a_2a_3 \leq 1$. If a_1 , a_2 , a_3 , and a_1 are positive numbers Senior Q1. whose sum is A, show that $a_1a_2 + a_2a_3 + a_3a_4 \leq A^2/4$.

We shall prove the general statement:- If a₁, a₂, a₃,..., and a_n are positive numbers whose sum is A, then $a_1a_2 + a_2a_3 + a_3a_4 + \cdots + a_{n-1}a_n \leq A^2/4.$

This result includes both questions. If A and B are real numbers, $(A + B)(A - B) =$ Solution. $A^2 - B^2 \leq A^2$, since $B^2 \geq 0$. Put $A = a_1 + a_2 + \cdots + a_n$, and $B = a_1 - a_2 + a_3 - \cdots + a_n$. Then $A + B = 2(a_1 + a_3 + \cdots)$ the sum of all a's with odd subscripts, and $A - B =$ $2(a_2 + a_1 + a_6 + \ldots)$, the sum of all a's with even subscripts. Hence $\mu(a_1 + a_3 + a_5 + \cdots)(a_2 + a_1 + a_6 + \cdots) \le A^2$.

Multiplying out the two expressions in parentheses yields all possible terms a_ia, with one subscript odd and one even. Included amongst these are a₁a₂, a₂a₃,..., a_{n-1}a_n, and, if $n > 3$, others as well (e.g. a_1a_μ) all of which are positive. Omitting these other terms makes the L.H.S. even smaller; hence $a_1a_2 + a_2a_3 + \cdots + a_{n-1}a_n \le (a_1 + a_3 + \cdots)(a_2 + a_1 + \cdots) \le A^2/4.$

Junior Q2. Given any four points in the plane, no three of which lie on a straight line, prove that it is possible to choose three of them, P_1 , P_2 , and P_3 say, such that the circle through them either encloses, or goes through, the fourth point P₁.

Label the points in such a way that P_3 and P_1 lie Proof.

on the same side of the line P_1P_2 and $\angle P_1 P_3 P_2 \leq \angle P_1 P_4 P_2$. If these angles are equal, the points are concyclic, and there is nothing more to be proved. But if $\angle P_1P_3P_2 \angle P_1P_4P_2$, then P_1

1 J FOR HON 4550

is an interior point of the circle

 $P_1P_2P_3$. For suppose P_1 lies outside the circle, and let P_2P_4 cut the circle at X. Then $/P_1P_3P_2$ $\angle P_1P_4P_2 \le \angle P_1XP_2$ (exterior angle of a triangle) = $\angle P_1P_3P_2$ (on the same arc). This contradiction shows that the supposition was false.

Junior 23. The following are \mathbf{n} simultaneous equations in the unknowns x_1, x_2, \ldots, x_n .

For what values of n do these equations have a unique solution? When the solution is not unique, write down the most general solution.

Answer. Subtracting the first two equations gives $x_1 = x_1$. Similarly from the fourth and fifth, $x_{\mu} = x_{\gamma}$; and from the third last and the second last $x_{n-2} = x_1$. Hence:-

$$
x_{n-2} = x_1 = x_4 = x_7 = x_{10} = \dots \text{ and similarly}
$$

(1)
$$
x_{n-1} = x_2 = x_5 = x_8 = x_{11} = \dots
$$
 and

 $m - 3 - 6 - 9 - 12$ (a) If $n = 3k + 1$ where k is an integer, n is in the list 1, 4, 7, 10, ... and $x_1 = x_n = x_3 = x_{3k}$ (i.e. x_{n-1}) = x_2 . Therefore $x_1 + x_2 + x_3 = 0$ becomes $3x_1 = 0$, whence $0 = x_1 = x_2 = x_3 = x_i$ (i \leq n), the only solution. (b) Similarly, if $n = 3k + 2$, (i.e. n is in the list $2, 5, 8,...$) $x_2 = x_n = x_3 = x_{n-2} = x_1$ and again the only solution is $x_i = 0$. (c) If $n = 3k$, the equations (1) form three different cycles. All the given equations are satisfied in this case by

$$
x_1 = x_1 = x_7 = \dots = a
$$

\n $x_2 = x_5 = x_8 = \dots = b$
\n $x_3 = x_6 = x_9 = \dots = -a-b$, where a and b are any

numbers.

In the accompanying street map, Big St. and Junior Q4. Little St. are both one-way (they carry East-bound traffic only). By how many different routes can one drive from A to B? How many routes are there if the number of North-South side streets is altered from four to n? If the side streets are made one-way, carrying North-bound and South-bound traffic alternately, how many routes go from A to B on the given map? How many routes are there for 10 side streets?

Answer. (i) All side streets 2-way. By symmetry, there are the same number of routes from either of the points labelled (i) , $(i = 0, 1,$ 2,.... n) to B. Let this number be N_i . Then $N_0 = 1$, obviously. B Also from a point (i) there are N_{i-1} routes if the first side street is taken, and a further N_{i-1} if it is not. Hence $N_i = 2N_{i-1}$.

Thus $N_1 = 2.1 = 2^1$; $N_2 = 2N_1 = 2^2$; and eventually $N_n = 2^n$. The number of routes from A to B is $N_n + N_n = 2^{n+1}$. For the given diagram, $n = 4$, and the number of routes is 2^5 (= 32). (ii) Side streets one-way, carrying North-bound and

 (1)

 $(1 - 1)$

South-bound traffic alternately.

 $i(-1)$ Let P₁, $(i = 0, 1, 2, ... n)$ and P be the number of different
- routes to B from the point (i) β or from A. Obviously $P_0 = 1$ (c) and $P_1 = 2$. From the point (i) $tan (t) (t-2) (2)$ (n) there are P_{i-1} routes if the first side street is taken, and P if it is not. Hence

 $1 - 2$

 $P_i = P_{i-1} + P_{i-2}$. It follows that P_n is the $(n + 1)$ th term of the list $1, 2, 3, 5, 8, 13, 21, 34, ...$ in which each number is the sum of the previous two. Now $P_A = P_n + P_{n-1}$. so that if there are n side streets P_A is the $(n + 2)$ th term of the list. In particular, $P_A = 13$ if there are four side streets, and $P_A = 233$ if there are tenside streets.

Junior Q5 and Senior Q2. (i) Show that $5^n - 1$ is divisible by four, n being any positive integer. (a) $5^{n} - 1 = (5 - 1)(5^{n-1} + 5^{n-2} + ... + 5 + 1)$. Proof.

as may be seen by multiplying out the R.H.S. The first factor is four, the second an integer.

(b) $(4 + 1)^n - 1 = 4^n + {n \choose 1}4^{n-1} + {n \choose 2}4^{n-2} \cdots + 4 + 1 - 1$ After cancelling the last two terms, all remaining terms are integers divisible by 4.

There are other simple proofs.

(ii) A list of prime numbers p_1 , p_2 , P_3 P_n ... is generated as follows: $p_1 = 2$, and if $n > 1$, P_n is the largest prime factor of $P_1P_2P_3 \cdots P_{n-1}$ + 1. Thus $p_2 = 3$, (the largest prime factor of 2 + 1), $p_3 = 7$, $p_4 = 43$, p_5 = 139, (since 2.3.7.43 + 1 = 1807 = 13.139). It does not follow from this rule that p_{n+1} is necessarily larger than p_n. However, prove that the prime number 5 never occurs in the list.

Proof. First we show that no prime occurs twice in the list. For p_n is a factor of $p_1p_2 \cdots p_{n-1} + 1$, a property not shared by p_1 , p_2 , or p_{n-1} , so that $p_n \neq p_i$, i < n. In particular, 2 occurs only once.

If, for some n_p , $p_n = 5$, then 5 is the largest prime factor of $2.3.7. p_{\mu} \cdots p_{n-1} + 1$. Since neither of the smaller primes 2 and 3 are factors of this number, 5 is also the smallest prime factor; i.e. $5^r = 2.3...p_{n-1}+1$ for some positive integer r. Hence 5^{r} - 1 = twice an odd number, which contradicts part (i) of the question. It follows that 5 cannot occur in the list.

Senior Q3. Q, is a convex quadrilateral (no re-entrant angle) and P is an interior point. Q₂ is the pedal quadrilateral of Q_1 with respect to P; i.e. the vertices of Q_2 are the feet of the perpendiculars dropped from P to the sides of Q₁. In this way can be constructed a sequence of convex quadrilaterals, Q_1 , Q_2 , Q_3 , Q_4 and Q_5 each being the pedal quadrilateral of its predecessor with respect to P. Prove that Q_5 is similar to Q_1 . **Proof:** On the diagram $\hat{\alpha}_1 = \hat{\alpha}_2$ (cyclic quad. $A_1A_2PD_2$) = $\hat{\alpha}_3$ = $\hat{\alpha}_4$ = $\hat{\alpha}_5$ similarly. In the same way $\hat{\beta}_1$ = $\hat{\beta}_5$ and $\hat{\lambda}_1 = \hat{\lambda}_5$ etc. Therefore $LB_1A_1D_1 = LB_5A_5D_5 = (\hat{\alpha} + \hat{\lambda}),$ and similar working using the other vertices shows that Q_1 and Q_5 are equiangular. This is not yet
sufficient to ensure that Q_1 is similar to Q_5 . (Consider a square and a rectangle). To prove the sides proportional:- The triangles PA_1B_1 , PB_1C_1 , PC_1D_1 , and PD_1A_1 are by the above working equiangular with the triangles PA₅B₅ PB_5C_5 , PC_5D_5 and PD_5A_5 respectively. Hence $A_1B_1/A_5B_5 =$ $PB_1/PB_5 = B_1C_1/B_5C_5 = PC_1/PC_5 = C_1D_1/C_5D_5 = PD_1/PD_5 = D_1A_1/D_5A_5$

 25

Senior Q_4 . Seven towns T_1 , T_2 , ... T_7 are connected by a net-
work of 21 one-way roads such that exactly one road runs between any two towns. The authorities have succeeded in directing the roads in such a manner that given any pair of towns T_i and T_j , there is a third town T_k , such that T_k can be reachfrom both T_i and T_i . ed by a direct route

(i) Prove that of the 6 roads with an end at any town T_j, the number in which traffic is directed away from T_j is at least 3. Hence, prove that it is exactly 3. (ii) Let the towns which can be reached directly from

 T_1 be numbered T_2 , T_3 , and T_4 . Show that the roads between T_3 , T_{2} , and T_{μ} form a circuit.

(iii) Display on a sketch a possible orientation of traffic in the 21 roads.

Answer. (i) Let A be any one of the towns. If B is any other

there is a third town C which can be reached directly from both A and B. Hence at least one road leaves A. There is a town D which can be reached directly from both A and C. Now consider A and D. There is a town E (possibly the same town as B) which can be reach-

ed directly from both A and D. E is not the same town as C since in the road CD traffic is directed from C to D, whilst in the road DE traffic runs from D to E. Hence there are at least three towns C.D. and E which can be reached directly from A. Since there are only 21 roads and we have shown that at least 3 leave each of the 7 towns, there must be exactly 3 leaving (and therefore 3 entering) each town.

(ii) With the same notation as in (i) traffic is known to flow from C to D and from D to E. We have only to show that in the road EC traffic flows from E to C. Consider A There is a town, X, which can be reached directly from and E. each. The only towns apart from E which can be reached directly from A are C and D. But X cannot be D since traffic moves from D to E. Hence X is C and traffic moves from E to C.

SOLUTIONS.

The boy scout arranged the PREPARED (p 12). planks at a corner, as shown in the following diagram.

"let The wise man said, (p 14). BRAINTEASER each ride the other's horse".

 $(p. 27).$ CAN YOU SEE THIS ?

