SOLUTIONS of the COMPETITION PROBLEMS.

Junior Q1. If a_1 , a_2 , and a_3 , are positive numbers whose sum is two, prove that $a_1a_2 + a_2a_3 \le 1$.

Senior Q1. If a_1 , a_2 , a_3 , and a_4 are positive numbers whose sum is A, show that $a_1a_2 + a_2a_3 + a_3a_4 \le A^2/4$.

We shall prove the general statement:- If a 1,

a₂, a₃,..., and a_n are positive numbers whose sum is A, then

$$a_1 a_2 + a_2 a_3 + a_3 a_4 + \dots + a_{n-1} a_n \le A^2/4$$
.

This result includes both questions.

Solution. If A and B are real numbers, $(A + B)(A - B) = A^2 - B^2 \le A^2$, since $B^2 \ge 0$. Put $A = a_1 + a_2 + \cdots + a_n$, and $A = a_1 - a_2 + a_3 - \cdots + a_n$. Then $A + B = 2(a_1 + a_3 + \cdots)$ the sum of all a's with odd subscripts, and $A - B = 2(a_2 + a_4 + a_6 + \cdots)$, the sum of all a's with even subscripts. Hence $4(a_1 + a_3 + a_5 + \cdots)(a_2 + a_4 + a_6 + \cdots) \le A^2$.

Multiplying out the two expressions in parentheses yields all possible terms $a_i a_j$ with one subscript odd and one even. Included amongst these are $a_1 a_2$, $a_2 a_3$, ..., $a_{n-1} a_n$, and, if n > 3, others as well (e.g. $a_1 a_4$) all of which are positive. Omitting these other terms makes the L.H.S. even smaller; hence $a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n \le (a_1 + a_3 + \dots)(a_2 + a_4 + \dots) \le A^2/4$.

Junior Q2. Given any four points in the plane, no three of which lie on a straight line, prove that it is possible to choose three of them, P_1 , P_2 , and P_3 say, such that the circle through them either encloses, or goes through, the fourth point P_h .

<u>Proof.</u> Label the points in such a way that P_3 and P_4 lie

on the same side of the line P_1P_2 and $P_1P_3P_2 \leq P_1P_4P_2$. If these angles are equal, the points are concyclic, and there is nothing more to be proved. But if $P_1P_3P_2 < P_1P_4P_2$, then P_4 is an interior point of the circle $P_1P_2P_3$. For suppose P_4 lies outside

the circle, and let P_2P_4 cut the circle at X. Then $P_1P_3P_2 < P_1P_4P_2 < P_1XP_2$ (exterior angle of a triangle) = $P_1P_3P_2$ (on the same arc). This contradiction shows that the supposition was false.

Junior Q3. The following are n simultaneous equations in the unknowns x_1, x_2, \dots, x_n .

$$x_{1} + x_{2} + x_{3} = 0$$
 $x_{2} + x_{3} + x_{4} = 0$
 $x_{3} + x_{4} + x_{5} = 0$
 $x_{n-2} + x_{n-1} + x_{n} = 0$
 $x_{n-1} + x_{n} + x_{1} = 0$
 $x_{n} + x_{1} + x_{2} = 0$

For what values of n do these equations have a unique solution? When the solution is not unique, write down the most general solution.

Answer. Subtracting the first two equations gives $x_1 = x_4$. Similarly from the fourth and fifth, $x_4 = x_7$; and from the third last and the second last $x_{n-2} = x_1$. Hence:-

$$x_{n-2} = x_1 = x_4 = x_7 = x_{10} = \dots$$
 and similarly

(1) $x_{n-1} = x_2 = x_5 = x_8 = x_{11} = \dots$ and

 $x_n = x_3 = x_6 = x_9 = x_{12} = \dots$

(a) If n = 3k + 1 where k is an integer, n is in the list 1, 4, 7, 10, ... and $x_1 = x_n = x_3 = x_{3k}$ (i.e. $x_{n-1}) = x_2$.

Therefore $x_1 + x_2 + x_3 = 0$ becomes $3x_1 = 0$, whence $0 = x_1 = x_2 = x_3 = x_1$ ($i \le n$), the only solution.

(b) Similarly, if n = 3k + 2, (i.e. n is in the list 2, 5, 8,...) $x_2 = x_n = x_3 = x_{n-2} = x_1$ and again the only solution is $x_i = 0$.

(c) If n = 3k, the equations (1) form three different cycles. All the given equations are satisfied in this case by

$$x_1 = x_4 = x_7 = \dots = a$$
 $x_2 = x_5 = x_8 = \dots = b$
 $x_3 = x_6 = x_9 = \dots = -a-b$, where a and b are any

numbers.

Junior Q4. In the accompanying street map, Big St. and Little St. are both one-way (they carry East-bound traffic only). By how many different routes can one drive from A to B? How many routes are there if the number of North-South side streets is altered from four to n? If the side streets are made one-way, carrying North-bound and South-bound traffic alternately, how many routes go from A to B on the given map? How many routes are there for 10 side streets?

Answer. (i) All side streets 2-way.

By symmetry, there are the same number of routes from either of the points labelled (i),(i = 0, 1, 2,...n) to B. Let this number be N_i. Then N₀ = 1, obviously.

B Also from a point (i) there are

N routes if the first side street

is taken, and a further N if

it is not. Hence N = 2N i.

Thus $N_1 = 2.1 = 2^1$; $N_2 = 2N_1 = 2^2$; and eventually $N_n = 2^n$. The number of routes from A to B is $N_n + N_n = 2^{n+1}$. For the given diagram, n = 4, and the number of routes is 2^5 (= 32).

(ii) Side streets one-way, carrying North-bound and South-bound traffic alternately.

Let P_i , (i = 0, 1, 2, ...n) and P_A be the number of different routes to B from the point (i) B or from A. Obviously $P_0 = 1$ and $P_1 = 2$. From the point (i)

there are P routes if the first

side street is taken, and P if it is not. Hence

 $P_i = P_{i-1} + P_{i-2}$. It follows that P_n is the (n+1)th term of the list 1, 2, 3, 5, 8, 13, 21, 34, ... in which each number is the sum of the previous two. Now $P_A = P_1 + P_2$ so that if there are P_A is the P_A is the P_A is the P_A is the P_A term of the list. In particular, P_A = 13 if there are four side streets, and P_A = 233 if there are tenside streets.

Junior Q5 and Senior Q2. (i) Show that $5^n - 1$ is divisible by four, n being any positive integer.

<u>Proof.</u> (a) $5^n - 1 = (5 - 1)(5^{n-1} + 5^{n-2} + ... + 5 + 1)$, as may be seen by multiplying out the R.H.S. The first factor is four, the second an integer.

(b) $(4+1)^n - 1 = 4^n + {}^nC_14^{n-1} + {}^nC_24^{n-2} \cdot \cdot \cdot + 4 + 1 - 1$ After cancelling the last two terms, all remaining terms are integers divisible by 4.

There are other simple proofs.

(ii) A list of prime numbers p_1 , p_2 , p_3 , ..., p_n , ... is generated as follows: $p_1 = 2$, and if n > 1, p_n is the largest prime factor of $p_1 p_2 p_3 \cdots p_{n-1} + 1$. Thus $p_2 = 3$, (the largest prime factor of 2 + 1), $p_3 = 7$, $p_4 = 43$, $p_5 = 139$, (since 2.3.7.43 + 1 = 1807 = 13.139). It does not follow from this rule that p_{n+1} is necessarily larger than p_n . However, prove that the prime number 5 never occurs in the list.

<u>Proof.</u> First we show that no prime occurs twice in the list. For p_n is a factor of $p_1 p_2 \cdots p_{n-1} + 1$, a property not shared by p_1, p_2, \dots or p_{n-1} , so that $p_n \neq p_i$, i < n. In particular, 2 occurs only once. If, for some n, $p_n = 5$, then 5 is the largest prime factor of $2.3.7.p_4...p_{n-1} + 1$. Since neither of the smaller primes 2 and 3 are factors of this number, 5 is also the smallest prime factor; i.e. $5^r = 2.3...p_{n-1} + 1$ for some positive integer r. Hence $5^r - 1 = t$ wice an odd number, which contradicts part (i) of the question. It follows that 5 cannot occur in the list.

Senior Q3. Q is a convex quadrilateral (no re-entrant angle) and P is an interior point. Q, is the pedal quadrilateral of Q1 with respect to P; i.e. the vertices of Q2 are the feet of the perpendiculars dropped from P to the sides of Q1. In this way can be constructed a sequence of convex quadrilaterals, Q1, Q2, Q3, Q4 and Q5 each being the pedal quadrilateral of its predecessor with respect to P. Prove that Q is similar to Q1. Proof: On the diagram $\hat{\alpha}_1 = \hat{\alpha}_2$ (cyclic quad. $A_1 A_2 PD_2$) = $\hat{\alpha}_3$ = $\hat{\alpha}_4$ = $\hat{\alpha}_5$ similarly. In the same way $\hat{\beta}_1$ = $\hat{\beta}_5$ and $\hat{\lambda}_1 = \hat{\lambda}_5$ etc. Therefore $(B_1A_1D_1 = (B_5A_5D_5 = (\hat{\alpha} + \hat{\lambda}))$, and similar working using the other vertices shows that Q_1 and Q_5 are equiangular. This is not yet sufficient to ensure that Q_1 is similar to Q_5 . (Consider a square and a rectangle). To prove the sides proportional:- The triangles PA1B1, PB1C1, PC1D1, and PD1A1 are by the above working equiangular with the triangles PA5B5 PB_5C_5 , PC_5D_5 and PD_5A_5 respectively. Hence $A_1B_1/A_5B_5 =$ $PB_1/PB_5 = B_1C_1/B_5C_5 = PC_1/PC_5 = C_1D_1/C_5D_5 = PD_1/PD_5 = D_1A_1/D_5A_5$

Senior Q4. Seven towns $T_1, T_2, \ldots T_7$ are connected by a network of 21 one-way roads such that exactly one road runs between any two towns. The authorities have succeeded in directing the roads in such a manner that given any pair of towns T_i and T_j , there is a third town T_k , such that T_k can be reached by a direct route from both T_i and T_j .

(i) Prove that of the 6 roads with an end at any town T, the number in which traffic is directed away from T is at

least 3. Hence, prove that it is exactly 3.

(ii) Let the towns which can be reached directly from T_1 be numbered T_2 , T_3 , and T_4 . Show that the roads between T_3 , T_2 , and T_4 form a circuit.

(iii)Display on a sketch a possible orientation of traffic in the 21 roads.

Answer. (i) Let A be any one of the towns. If B is any other

there is a third town C which can be reached directly from both A and B. Hence at least one road leaves A. There is a town D which can be reached directly from both A and C. Now consider A and D. There is a town E (possibly the same town as B) which can be reach-

ed directly from both A and D. E is not the same town as C since in the road CD traffic is directed from C to D, whilst in the road DE traffic runs from D to E. Hence there are at least three towns C,D, and E which can be reached directly from A. Since there are only 21 roads and we have shown that at least 3 leave each of the 7 towns, there must be exactly 3 leaving (and therefore 3 entering) each town.

(ii) With the same notation as in (i) traffic is known to flow from C to D and from D to E. We have only to show that in the road EC traffic flows from E to C. Consider A and E. There is a town, X, which can be reached directly from each. The only towns apart from E which can be reached directly from A are C and D. But X cannot be D since traffic moves from D to E. Hence X is C and traffic moves from E to C.

CAN YOU SEE THIS?

FRONT and TOP

BACK and BOTTOM

This object has plane faces and has been cut from a block of wood.

Draw a three dimensional sketch of such an object.

(Answer Page 28).

SOLUTIONS.

PREPARED (p 12). The boy scout arranged the planks at a corner, as shown in the following diagram.

BRAINTEASER (p 14). The wise man said, "let each ride the other's horse".

CAN YOU SEE THIS? (p. 27).

