Parabola Volume 2, Issue 2 (1965)

ALMOST' ALL REAL NUMBERS ARE TRANSCENDENTAL,

Doubtless the above heading will be to most of our
readers as cryptic and as meaningless as some of the more
outlandish examples of the so-called "Strine language" which
have recently appeared in the newspapers. It is the purpose
of this article both to explain what it means, by defining the
terms''almost all" and '"'transcendental', and also to outline
how it may be proved.

Not only was the result received with astonishment by
mathematicians in 1874, but the method used by the German
mathematician G. Cantor in'the proof sparked off a controversy
regarding its validity, which was largely responsible for the
investigations into the foundations of mathematics undertaken
in the present century.

We begin with a discussion of some classes of real numbers.
Our readers will certainly be familiar with the usual
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¥ number axis. Some of
these points correspond to infegers (0714 13582, %eta.l) Amn
apparently much more numerous class consists of points
corresponding to numbers of the form ﬁp where p and q are

both integers (q # 0). These are called rational numbers, and
any interval of the line, however short, contains an infinite set
of rational points. It is not immediately obvious that there are
any points which do not correspond to rational numbers. The
discovery that the number .,/ 2 (the length of the diagonal of the
unit square) could not be expressed as a vulgar fraction, b 5
came as something of a shock to early Greek mathematicians of
the Pythagorean school.
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That,/ 2 is irrational can be proved by reductio ad
absurdum:- Suppose A2 =-g, a rational number reduced to
its lowest terms, p and q being integers with no common
factor. Since p2 = 2q2, it follows that p2, and therefore that’

P, 1s an even number, Substituting p = 2P, where P is an

integer, we obtain 4P2 = 2q2, q2 = 2P2. Thus q2, and therefore

q, are also even, so that both P and q have the factor 2,
contradicting our assumption that they shared no common factor.
This contradiction shows that\/ 2 cannot be rational,

Having found one irrational number it is easy to see that
the irrationals are, like the rationals, thickly distributed on
the number axis; for example, the additon of any rational number
r to 2 results in an irrational number, r +4/2, and this
fact already shows the assertion to be true, (Prove that
r +y/'2 is irrational),

There is another important classification of the real
numbers which we shall now discuss, ""Algebraic numbers" are
those which satisfy an algebraic equation of the type
=1
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all integers.

Tassat a xd+a =0 wherea ,a_,...,a are
1 0 o) n
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Every rational number 'g is algebraic since it satisfies
the equationqx - p = 0. The irrational number+/2 is

: ; 2
algebraic since it satisfies the quadratic equation x~ - 2 = 0; and
r+ /2 is algebraic if r = -5, since it satisfies

q2x2 - 2pgx + p2 ~ 2q2 = 0.

Numbers which are not algebraic are called "transcendental
numbers''. Again it is not obvious that some real numbers are not
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algebraic. So far from obvious indeed, that it was not until 1844
that the first transcendental number was found; in that year, the
French mathematician Liouville was able to show that, for example,
the number ,1100010000000000000000010. .. .. (the nth "1" occurs

de BHHE 12 20 8.5 L nth place) was not algebraic.

Liouville's work remained for almost 30 years the only
significant accomplishment in this field. Then Charles Hermite,

i ‘ =1 +.1 1 e
in 1873, showed that the number, e, (=1 _1_:_+ o5 R = e e )

was also transcendental, using methods whose originality and elegance
won immediate admiration from his contemporaries. In view of its
long history, with just two isolated successes, problems associated
with transcendental numbers acquired a reputation (deservedly) for

a level of difficulty demanding more than ordinary mathematical ability
(e.g. it was another 9 years before Lindemann was able to extend
Hermite's method to show that # is transcendental). No wonder

the mathematical world was taken by surprise when in 1874 Cantor
asserted that '"almost all real numbers are transcendental'’,

This statement will still seem meaningless to the reader
even if we can show that the class of transcendental numbers is in-
finite., For we have seen that there are infinitely many algebraic
numbers, and Cantor's result seems to imply that one infinite class
contains, in some sense, many more elements than a second infinite
class. Cantor's great contribution was indeed to give precise mean-
ings to the phrases ''set A contains the same number of elements as
set B' and '"set A contains a larger number of elements than set B"
in such a way that they continue to make sense when the sets are in-
finite. @ We shall consider each of these phrases in turn.

Two finite sets contain the same number of elements (or,
equivalently, '"have the same cardinal number') if and only if their
elements can be paired off in such a way that none are left over,
unpaired , in either set. Thus if in a room every chair is occupied
by one person, and no-one is left unseated, it is quite clear that the
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set of chairs and the set of people in the room have the same
cardinal number. One says that there is a (1-1) correspondence
between the elements of the two sets. If it is possible to set up

a (1-1) correspondence between the elements of set A and set

B, one says ''set A is similar to set B'. The process of counting
the elements of a set consists in nothing more nor less than setting
up a (1-1) correspondence between the elements of the set, and the
set of natural numbers 1,2, 3..., n.

Cantor now defines, for infinite sets, the phrase ''set A
contains the same number of elements as set B'' to mean that
it is possible to set up a (1-1) correspondence between the elements
of the two sets. This definition leads to some rather unexpected
results. For example, consider

1, 2, 3, 4, , M,
S T B |
2, 4, B, 8, ... , 21,

which shows how a (1-1) correspondence may be set up between

the set of all positive integers, and its subset, the set of all even

positive integers. Thus, by thedefinition, the set of even integers

contains the same number of elements as the set of all integers.

The cardinal number of the set of natural numbers was called by Cantor.
N, (aleph null). You will notice that the statement ''set A

has cardinal number No "' is merely another way of saylng that

set A is similar to the set of positive integers.

¢
The accompanying diagram shows how the

points in a short line segment AB can be put
(1-1) correspondence with the points in a
longer line segment. Thus any two line
segments contain the same number of points.




Again oconsider

"% 3 ‘a4 5§, 8, 7.8 9 16, 41, 13 13 14, 16, 16,107,
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In the second row the elements are the rational numbers P

where p and q are relatively prime, q> 0. They are arranged

p p
as follows:- _q_l__ precedes 2  if

1 q2

Ipal +a < ip |+ a,; orif |py] +a; = ||+ a, butipyl<|p [
or if |p,| +q1=|p2| +q,and |p,| = |p2\ but p, > 0. A little

thought will convince you that any rational number P occurs sooner

or later in the second row. According to our definition the set of
positive integers has the same cardinal number as the set containing
21l rational numbers. A similar but slightly more complicated
procedure which we will omit shows likewise that the set of algebraic
numbers has cardinal o i.e. can be put into one-one correspond-
ence with the positive integers.

At this stage you may be beginning to believe that all infinite

sets have the same cardinal number, that after all there is only one
infinity, Such, however, is not the case. We return te the secend
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statement;- ''Set A contains a larger number of elements than
set B'. For finite sets this is true if and only if when the ele-
ments of B are paired off with the elements of A there is at
least one element of A left over, unpaired. That is, a (1 - 1)
correspondence can be set up between the elements of B and
the elements of a subset of A, but not between the elements of
B and all the elements of A,

This last sentence is taken as the definition of the state-
ment :-''The cardinal number of the set A is greater than that
of the set B', when the sets are infinite. Note that the first
part of the sentence is no! sufficient by itself, and does not im-
ply the second. We have indeed already seen several examples
of (1 - 1) correspondences between infinite sets and subsets of
themselves. The existence of such a correspondence is a prop-
erty which is always true of infinite sets and never of finite
sets,

We can now produce an example of an infinite set whose
cardinal number is larger than Ng. The set of all real numbers
(continued next page)

ON SAFARI, A party of six, consisting of three cannibals and
three missionaries, wish to cross a wide river, They have at
their disposal only a canoe which will carry two people. An
additional difficulty (for the missionaries) consists in the fact
that if, at any stage, the cannibals on either bank outnumber the
missionaries with them, the former will proceed forthwith to eat
the latter. The head missionary is equal to the occasion, how-
ever, and he successfully organises the crossing without loss of
life. How does he do so? (Answer p. 13)




lying between 0 and 1 is such a set.

To prove this we must, according to our definition, do
two things. The first, which is very easy, is to show that there
is a one-one correspondence between the set of positive integers
and a subset of our set of real numbers,

For example,

PR R S 5 T,
Sl AL 1
8y asry 2o1ss LB A
2 " 4 n+1

The second, much more difficult, is to show that no such
one-one correspondence between the positive integers and all the
real numbers between 0 and 1 is possible, Suppose there is
such a correspondence, and let L be the real number which

corresponds to the integer n. i.e. we suppose it is possible

to construct a list of real numbers Cl’ 02, c3,. i Cn" . . which
contains every real number between 0 and 1. Each of these numbers
can be represented by its decimal expansion. (If the expansion

terminates we can pad it out by adding an unending string of zeros).

C]. = ., Cll C12 C13 ...... Cln ......
02 = 21 022 023 ....... Czn ......
“315 C83iFge Sgg 10 104 Copn e
Cn o nl n2 a3 """’ Cnn """"

We now show that contrary to our supposition there is
at least one number, d, between 0 and 1, missing from this list.
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In fact, let d = 'dldzd ......... S PrrrLr where the

digits dl’dz’ ..... ’dn’ ..... aré chosen as follows:
it Lo = 2, . put d1 = 3, otherwise put d1 = 2.
If Cog = 2, [PUL d2 = 3; otherwise put d2 = 2.
Bor every mn, if. e =2, put d =3; otherwise put d_ = 2.
nn n n

It is clear that d is a real number between 0 and 1. Butit is
not in the list. It is not ¢, because its decimal expansion differs
from that of ¢, in the first decimal place. In fact, it is not c¢
since its decimal expansion differs from that of Ca in the nth
decimal place,

This contradiction shows the impossibility of including
all real numbers between 0 and 1 in a single unending list;
the cardinal number, c¢, of this set is greater than N,. It is
easy to see (Problem O37(ii)) that the set of all real numbers
also has cardinal number, c¢, and it then follows by the results
you are asked to prove in Problem O36, that the set of transcend-
ental numbers also has cardinal c.

l In fact, it is clear from these results that not only is
c » Ny, but Ny is so negligible in comparison with c,
that removal of a set of cardinal Ng from a set of cardinal c
can never make any significant change at all in the number of
elements in the set; the remaining set still has cardinal number c.
A set of cardinal c¢ cannot be built up by putting together any finite
P number (however large) of sets of cardinal N ; in fact, not even
if N, such sets are put together, 4

In view of these facts, the statement ''almost all real num-
bers are transcendental' is quite justified. Cantor was, however,

able to find another, perhaps even more convincing, interpretation
of the phrase '"almost all' which we hope to discuss in a later issue

of Parabola. C. COX.
(Reference: D. Pedoe, The Gentle Art of Mathematics, Ch, III).
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