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GRAECO LATIN SQUARES AND THE DESIGN OF EXPERIMENTS.

In 1782 the Swiss mathematician, Leonard Euler, perhaps the
greatest mathematician of the eighteenth century (the only
other serious contender for the title is the Frenchman,
J.L. Lagrange), published a paper bearing the title "On a New
Type of Magic Square". 1In this paper he made a conjecture
about "Graeco-Latin squares" which remained a challenge to
mathematicians for over 175 years; it was not until 1958 that
three mathematicians in America, Bose, Shrikhande, and Parker,
were able to show that Euler's guess was substantially incorrect.

A Latin square of order n, is an arrangement of n symbols in
an n x n square, with the property that each symbol occurs
exactly once in each row, and once in
each column., Fig, 1 shows two examples
of Latin squares of order 3, one in which
ble | allyla |B |the 3 symbols are the Latin letters a, b,
and ¢, ; and the other using the first
three Greek letters,

Plg.: 1 A&, These two Latin squares have the additional
special property thatzwhen they are super-
imposed each of the 3¢ possible ways of
pairing a Latin letter with a Greek letter
occurs exactly once. Because of this
property they are called "orthogonal

Latin squares, and the combined array

cB ay | ba obtained by superimposing a pair of

: orthogonal Latin squares is termed a Graeco-
Latin square,

ao. | bB ey

by |ca | aB

Fig. 2 A,

Tt is obvious that if a, b, and ¢, in Fig. 1 are replaced
by say x, ¥, z, respectively, or by A, O ,| |, respectively,
the result will still be a Latin square using the new symbols.
We chose to use letters in our examples because it is then
clear how the name Graeco-Latin square arose, However, it is



more convenient and usual to use the first n natural numbers,
In this notation it is merely repeating our previous examnle
to say that Fig. 2 B. is a Graeco=Latin square resulting from
superimposing the orthogonal Latin squares in Fig. 1 B.
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Inspection of the Latin squares suggests
123 |h N | immediately how a Latin square of any
2 13 lhI's 1 | order n may be constructed. Construct each
row after the first from the preceding now
F19%95 16 2 | by shifting the symbols one column leftwarc
bds 6 1% 3 the symbol in the first column of the
preceding row being transferred to the last
column of the new row. (See Fig. 3 A.)
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The procedure may be varied by moving the symbols one column
to the right instead of to the left, or more generally, "a"
columns to the left, where a and n are relatively prime

(i.e., have no factor in common), For example, when n is odd,

a may be taken equal to 2,



112131 Not all Latin squares are of this cyclic
type, however. Fig. U shows a Latin square

byl k13 of order U in which the rows are not "oyclic®

3lul1]2 permutations of the preceding row.

Bl 3l @1 The existence of Graeco-Latin squares proves

Fig. & to be more difficult to decide for some
e isobiifiee orders, It is easy to see that there is only

one Latin square of order 2 (apart from the
choice of symbols), viz. 1 |2
2 1X

Tt is therefore clearly impossible to construct a Graeco-Latin
square of order 2,

For any odd value of n it is a simple matter to obtain a pair
of orthogongf=1atin squares both of the cyclic type described
above, by taking a equal to 1 and a equal to 2, With a = 2,
one obtains Fig. 5, and it is not difficult to
see that this is orthogonal to the Latin
2 |3 |4 |..{n | square in Fig. 3. Hence, there exist Graeco-
6 Latin squares of all odd orders. A little
more may be said about orthogonal Latin
squares both of cyclic type. It is not very
difficult to show (Problem Q) that the cyclic
Latin squares constructed as above with a = a
and a = a, are orthogonal if and only if the

difference (a. - a.,) is also relatively prime
-1 y
to n, (as well as "a, and a,). If n is an

Plz. 5. odd prime, we can ta%e a = E, B D e
 n =1, and since all the differences are
clearly relatively prime to n, we obtain
(n - 1) mutually orthogonal Latin squares of
cyeclic type.
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Fig. 6 shows a set of k4 mutually orthogonal Latin squares of
order 5. This is a "best possible" result; it is impossible
to have more than (n - 1) mutually orthogonal Latin squares,
whether of cyclic type or not, We illustrate the proof by
taking n = 5, Suppose there existed 5 mutually orthogonal
Latin squares of order 5. By suitable choice of the symbols
used for each of the squares, we may assume that when super-
imposed the first row is as shown in Phg. T
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a,b,c,d,e.
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Now consider the entries in any other compartment of the
square e.g. that in the first column and the second row.
None of these entries a, b, ¢, d and e can equal 1, since
there is already a 1 in the first column of each of the five Iatin
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squares. Hence, at least two of them are equal. For the sake
of definiteness let us suppose that a = b, and that both are
equa! to, say, 5. But in this case the first two Latin-squares
(i.e. represented by the first two symbols in each compartment)
are not orthogonal since the pairing (5, 5) occurs in at least
two compartments,

We return to the problem of the existence of Graeco-Latin
squares of even order, When n = 4, trial and error soon
produces an example, such as Fig, 8. Note that the first of
the two orthogonal Latin squares here is

that shown in Fig, 4; there is no Graeco-

1,1 2,2|3,3 b4 Latin square of order 4 in which either of

the Latin squares is of cyclic type. We
2,3 1,4 (4,1 | 3,2| shall not exhibit a Graeco-Latin square of

order 8, but it is not difficult to construct
3,4 4,3|1,2 |2,1| one. These facts, and the following theorem,

now enable us to assert that Graeco-Latin
squares of order n exist for all values of
42 3,1]2,4 [1,3 n which are multiples of k,

Fig. 8.

Theorem: If there exist Graeco-Latin squares of order m and n,
then there exists a Graeco-Latin square of order mn.

We illustrate the theorem and how it may be proved by taking
m = 3, n = 4 and showing how to construct a Graeco-Latin square
of order 12, We start with Fig. 2A, and replace each letter by
an appropriate Latin square of order 4., In fact we may replace
a everywhere by the Latin square in Fig. 4, and o by the
second Latin square in Fig., 8, so that aa is replaced by Fig. 8.
The symbol b is replaced by Fig. 4 with 5, 6, 7, 8 instead of
-1, 2, 3, b respectively, and ¢ is replaced by Fig. 4 with
9, 10, 11, 12 instead of 1, 2, 3, 4, Bimilarly,s and  y are
obta‘ned from a by substitution of 5, 6, 7, 8 or 9, 10, 11, 12
for 1,°2,°3, 4, Bee Pig, 9.
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It is a simple matter to convince oneself that a similar
process must always yield a Graeco-Latin square of order mn.

So far we have seen how to construct Graeco-Latin squares
of order n, where n is odd or any multiple of 4, This only
leaves the values 2, 6, 10, 14 ....(i.e, numbers which leave
a remainder of 2 on division by 4), and we already know that
there is no Graeco-Latin square of order 2. Euler tried hard
to find a Graeco-Latin square of order 6, but did not succeed
and declared that he had little hesitation in conjecturing
that none existed, and he extended his guess to all the other
numbers in the list as well, As regards the value n = 6,
Euler was eventually proved correct in 1900 by a mathematician
named Tarry, who used the not very exciting method of examining
all the possibilities. This was tedious and lengthy enough,
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but a similar programme even for the next smallest case, n = 10,
would involve a vastly greater amount of labour. Indeed, even
using a large computer to search for orthogonal Graeco-Latin
squares of order 10 proved to be impracticable. After two hours,
the machine found no such square, but the programmer estimated
that it would take at least 100 hours before a significant
portion of the possibilities had been examined.

Euler, one of the most prolific mathematicians of all timr
produced an enormous amount of new mathematics that was
immediately useful and important, but he did not imagine that
his little investigation on Graeco-Latin squares possessed
either quality.

However, Sir R, Fisher (one of the most important figures in
the twentieth century development of statistical methods)
demonstrated in the early 1920's that there was an application
of Graeco-Latin squares in connection with the efficient design
of experiments.,

Suppose, for example, it is desired to compare experimentally
five different fertilizers on wheat., It would be possible to
plant a field of wheat, and apply the fertilizers in five equal
strips. This experiment would give valuable results if one
could be certain that the field was equally fertile everywhere,
but the results would not be valid if the fertility wvaried from
one strip to the next. To prevent variation in fertility in
either direction across the field from making the experiment
worthless, Fisher pointed out that the field should be divided
into 25 plots and the fertilizers applied as indicated by a
Latin square of order 5.

Jext, suppose that it is desired to test the fertilizers on
5 different varieties of wheat. Now the most efficient way of
designing the experiment makes use of a Graeco-Latin square of
order 5. The 5 varieties of wheat are sown as indicated by the
positions of the Latin letters, and the five fertilizers are
applied by reference to the Greek letters,
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Graeco-Latin squares are now widely used for designing
experiments in biology, medicine, sociology and even marketing.
The Graeco-Latin square is simply the chart of the experiment.
Its rows take care of one variable, its columns the care of
another, the Latin symbols a third, and the Greek symbols a
fourth. Another factor can be introduced if it is possible to

find yet another Latin square orthogonal to each of the two in
the Graeco-Latin array.

Euler's conjecture was eventually shown to be incorrect as
a result of researches on a more general class of objects in
combinatorial analysis known as "Balanced Incomplete Block
Designs." Bose and Shrikhande noticed that an earlier paper
by Parker on this topic threw grave doubt upon the truth of
Euler's conjecture, and using its results they were able to
construct Graeco-Latin squares of order 22, Then Parker
himself made a further contribution which amongst other things
produced a Graeco-Latin square of order 10. Eventually it
became clear that Graeco-Latin squares of all orders greater
than 6 could be constructed, We conclude by exhibiting a
Graeco-Latin square of order 10, discovered by Parker.
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