Solutions of Senior Competition Problems

Qu. 1. If a, b, c, are any three numbers show that

$$a^2 + b^2 + c^2 \ge ab + bc + ca$$
.

Answer. $2[a^2 + b^2 + c^2 - ab - bc - ca]$ = $(a-b)^2 + (b-c)^2 + (c-a)^2 \ge 0$. (Hence equality only applies if a = b = c).

- Qu. 2. P is a given point lying within the arms of an acute angle AOB. Show how to construct the straight line through P which cuts off the triangle of minimum area.
- Answer. Construct PX || OB cutting OA at X.

 Make $^*XY = ^*OX$. Join YP and produce to cut OB at Z. YZ is the desired line. To prove this let any other line $-Y_1Z_1$ through P (if necessary produced) cut the line through Y parallel to OB at U. Then $\Delta YPU \equiv \Delta ZPZ_1$ whence it is obvious that area of $\Delta OYZ < area \Delta OY_1Z_1$.
 - Qu. 3. Let m be an integer greater than 1 and define the numbers m_1, m_2, m_3, \ldots , by putting $m = m_1$ and

$$m_{i+1} = m_i^2 - m_i + 1$$

for i = 1, 2, 3, ... Show that none of the numbers $m_2, m_3, m_4, ...$ is divisible by m.

Answer. m_2 is expressible in the form $m_2 = m q_2 + 1$ where q_2 is an integer. In fact $q_2 = (m-1)$. Also if for any k, $m_k = m q_k + 1$ where q_k is an integer, then $m_{k+1} = m_k^2 - m_k + 1$ $= m[m q_k^2 + q_k] + 1$ $= m q_{k+1} + 1$

where $q_{k+1} = m q_k^2 + q_i$ is an integer. It follows by mathematical induction that for every i > 1 $m_i = m q_i + 1$ whence m_i

Qu. 4. Five players each hold five cards of values 1,2,3,4 and 5 respectively. Each player exchanges one of his cards with each of the other four players, and in each case receives a card of the same value in return. Show that among the five cards which are not exchanged there is one of each value.

is not divisible by m .

Answer. Of the five cards valued 1, an even number are exchanged (since at each exchange exactly 2 change hands). Therefore an odd number remain not exchanged. Hence at least one card valued 1 is not exchanged. Similarly there is at least one card valued 2, 3, 4 or 5 not exchanged. As the number of cards not

exchanged is equal to 5, there must be exactly one card of each value not exchanged.

- Qu. 5. In a certain country there are 5 cities which are connected by a system of roads such that:
 - (i) each road joins two cities; the only road junctions occur at the cities;
 - (ii) for any pair of cities there is exactly one route which a motorist can follow from one city to the other.

Prove that there are exactly four roads joining the cities.

If there are n cities, prove that there are exactly n - 1 roads.

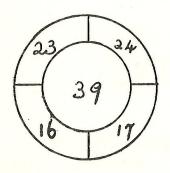
Suppose for k cities such a system of roads

Answer. We shall prove the result for n cities by induction. If n = 2, there must clearly be only 1 road.

necessarily consists of (k-1) roads. We shall prove that it then follows that for (k+1) cities such a system of roads consists of exactly k roads. Let A_1 be any one of the (k+1) cities. If there is only one road leaving A_1 , we delete both A, and this road. The remaining k cities are connected by the remaining roads which still must satisfy conditions (i) and (ii) . (For (ii) the unique route joining any two of the remaining towns cannot have required use of the deleted road since there was no other exit from A_1). By the induction hypothesis

(k-1) roads remain, so there were k originally. If there are several roads leaving A₁ we travel along any of them to A₂, and then if possible by a different road to A₃ (which cannot be the same as A₁). Eventually since there are only n towns, we must reach a town P which has no other road leaving it than the one by which it was reached, and this town can be used in place of A in the above induction argument to complete the proof.

Darts (Answer p.40)



On this dartboard I scored exactly 100. How?

Can You Do It Duck? (Answer P.40)

Many years ago, long before decimal currency, a farmer went to market and bought 100 animals for £100. His purchase consisted of cows at £5 each, sheep at £1 each and ducks at 1/- each. How many of each did he buy?

Answers to the Puzzles.

Puzzle (p10)

$$A = 9$$
, $B = 7$, $C = 1$, $D = 3$, $E = 4$, $F = 8$, $G = 2$, $H = 0$.

Darts (p39)

I scored 17 four times and 16 twice.

Can Ewe Do It Duck? (p 39)

The farmer bought 19 cows, 80 ducks and 1 sheep.

The Wine Vessels (p 16)

$$(20,0,0) \rightarrow (11,0,9) \rightarrow (11,9,0) \rightarrow (2,9,9)$$

 $\rightarrow (2,13,5) \rightarrow (15,0,5) \rightarrow (15,5,0) \rightarrow (6,5,9)$
 $\rightarrow (6,13,1) \rightarrow (19,0,1) \rightarrow (19,1,0) \rightarrow (10,1,9)$
 $\rightarrow (10,10,0)$.

The triplets give the number of gallons of wine in the 20 gal vessel, the 13 gal. vessel, and the 9 gal. vessel in that order, at successive stages of the solution.

High Finance (p 15)

36 dollars was distributed amongst 6 children.

Coins (p.20)

£ . . 50

One answer is indicated by the accompanying diagram.

• • •