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Diophantine Equations and Fermats Last Theorem

There is little doubt that of all unsolved problems of
mathematics the most widely known and most often attempted
is that known as Fermat's Last Theorem. There are several
reasons for its fame: the nature of the problem does not involve
any difficult abstruse concepts, but on the contrary is quite
simple to understand; a large prize of 100, 000 marks offered
by a Genman professor stimulated interest in the problem
until inflation during the 1914-18 war rendered the amount
offered insignificant; and then the mystery as to whether
Fermat himself possessed a proof naturally arouses curiosity
about the question,

Pierre Fermat (1601-1665) occupies an almost unique role
amongst the really great mathematicians of history in that he
did not make a living as an academic. He was in fact a lawyer,
and mathematics was merely his hobby., ‘His interests ranged
over all the newly developing fields of mathematics of the age,
analytic geometry, calculus, the theory of probability(important
contributions) and the theory of numbers, in which he was
especially gifted. In this last field his researches were inspired
by a very ancient treatise, ''The Arithmetica'', by Diophantus,

a Latin translation of which had been printed in 1621, In this
masterpiece of Greek mathematics Diophantus did for
"arithmetic'' what Euclid had done earlier for geometry viz.
collected all the important solved problems in the theory of
numbers, and arranged them in a reasonable order, later
propositions frequently making use of earlier material,

It is not too much to say that for the next century and more
the major part of progress in the theory of numbers consisted
in expa nding, generalising and developing the ideas contained
in this work. Indeed to this day the topic of Diophantine
equations occupies an important place in the subject.
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As an illustration of the simplest type of Diophantine
equations consider the following question:

The cash register of the poultry counter shows a taking
of £13/5/-. Only fowls and ducklings were sold, at prices
of 25/- and 35/- per bird respectively, How many fowls
and how many ducklings were sold?

If f is the number of fowls, and d the number of
ducklings, we have the equation

25f + 35d = 265

or simplified:
5f + 7d = 53

This is one linear equation with two unknowns, and if
we regard it on its own, and admit any values for f and d,
we obtain an infinite number of solutions, hence the equation
is indeterminate. However, it is obvious that f and d
must be positive integers if we are to obtain a meaningful
answer to the original question.,. We may solve the equation
by trial and error, but it is more satisfactory to go about it
in a systematic way, making sure that we find all the possible
solutions, '

We may proceed as follows: If
53 - 7d = 5f (d,f positive integers),

then 53-7d must be divisible by 5. We may simplify this
by noticing that

93 - 7d = 55 - 5d - (2 + 2d) = 5(11-d) - 2(1 + d), where
5(11-d) is a multiple of 5. Hence 2(1 + d) must be .
divisible by 5; as 5 and 2 are relatively prime
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(i. e, have no common factors apart from 1), it follows *)that 1+d
is divisible by 5, that is, 1 + d = 5k for some integer k. Hence

d=5k-1(kan integer),"

where k must be positive to make d positive, Substituting
for d in the original equation,

53 - 7(5k - 1)

1]

51,
1 2 T 7ko

that is, ‘ £
Since k, f are positive integers, the only possibility is k = 1.

Putting k = 1, we obtain d =4, £=5 as the enly solution.

The example discussed above represents a particularly
simple case, that of a linear equation in two unknowns which
has a single solution in positive integers. This is by no
means the general result. If in the above problem the value
of the cash takings were changed to £26/10/- we would have
the equation '

5f + 7d = 106,
which has three positive solutions

f=17, d=3;, f=10, d=8; and f=3, d=13.
If the value were changedto £ 5 3/4, we would have

of + 7d = 23

which has no positive integer solutions. (However it has an
infinite number of integer solutions if negative numbers are
allowed, as they might be in some other problem leading to
the same equation,)

%) ,

In this argument we use the fundamental theorem of arithmetic:
Every positive integer except 1 can be expressed in one and
only one way as a product of prime factors. This theorem is

not ''self-evident'', as it appears to the beginner, but is readily
proved. 3




Let us consider a second example of a Diophantine
equation which is more relevant to the subject of this
article. Find all sets of positive integers x, y and z
such that

2
x2+y2=z . (1)

First note that if x and y have a cbmmon factor, h,
so that x = hX and y =hY where X and Y are integers,

then z2 = h2 (X2 +'Y2), whence h is also a factor of z,

z = hZ, and Z2 = X2 -+ Yz. (Similarly, if h is a factor

of z and x it is a factor of y etc.). Thus, if the largest
common factor is removed from any triple (x, y, z)
satisfying (1) we obtain a triple (X; Y, Z) satisfying (1)
such that no two elements have a common factor (i, e.

X, Yand Z are relatively prime in pairs). It is clearly
sufficient to find all triples satisfying (1) and subject

to this extra condition.

Now it is a well known (and easily proved) fact that
the squares of even numbers are divisible by 4, but the
squares of odd numbers leave a remainder of 1 on
division by 4., Hence if

2 2 2 :

X" +Y =2 (2) we must have either X or Y
even, the other odd, and Z odd. (Or of course, all even,
but we are assuming at this stage that X, Y and Z are
relatively prime in pairs. Note that it is not possible for
X and Y to be odd and Z even since the L, H, S. would
leave a remainder of 2 on division by 4). For definiteness
let us represent the even number by Y, so that X is odd.
Rearranging (2) gives

x2 = 22 - v? - (z-v)zZ+Y)

-
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Any common factor k(>1) of the odd numbers Z-Y and
-+ Z +Y would also be a factor of both
- -+ - -

2;:(Z+Y)-2F(ZY) andon=(Z Y)z(Z Y),
contradicting our assumption that Y and Z are relatively
prime. Hence (Z-Y) and (Z+Y) are relatively prime. If
p is any prime factor of (Z-Y) then p/X2, (read this as
p divides X2 ) whence p/X and p2/X2, Since p } (Z + V)
we have p2/(Z-Y), It follows easily that Z-Y is a perfect

square Z - Y = u2, say, and similarly

Z+Y = v2 . Note that u and v are both odd integers,

v> U.

2 2

+
Solving we obtain Z = E—-E—V—
POV u?

2

and X=Zz-Y2=uv. :
Finally, multiplying throughout by any common factor h

we have obtained all solutions of x2 + y2 = z2 jn the form
ve - u? vZ + y2
5 » 2 = h——— where u and v

2
are any two odd integers,

Xx=huv, y=h

(To test this solution try say, h=1, u=1, v=3;
h=1,u=1,v=5; h=1, u=3, v=25; obtaining for (x,y,2)
the triples (3,4,5), (5,12,13), (8,15,17) respectively, )

It was in connection with the above problem that Fermat
stated his famous theorem. He wrote the following note in
the margin of his copy of Diophantus ''On the other hand, it
is impossible to separate a cube into two cubes, a biquadrate
into two biquadrates or generally any power except a square

into two powers with the same exponent. I have discovered
a truly marvellous proof of this, which however the margin
is not large enough to contgin. "



In other words Fermat was asserting that there exist
no positive integers (or equivalently, any rational numbers)
X, ¥, Z, such that '

x + yn =z if n is any integer greater than 2,

There is now a very considerable amount of evidence to
suggest that Fermat's statement is true, No exceptions have
ever been discovered in the three centuries since Fermat's
death. On the other hand for many particular values of n
the statement has been proved true. (For example, it has
been proved that if n contains any odd prime factor less than
619 there are no integers x, y, z satisfying the equation. )

This being so there remains the question as to whether
Fermat did indeed find a '"truly marvellous proof'. No
authority questions the sincerity of Fermat's claim, for in
all that is known of the man, and in all else that remains of
his writings, he stands revealed as a man of the highest
integrity., On other occasions he made guesses about
mathematical results, but he made it quite clear that they
were guesses, and that he had been unable to prove them.

In every other came in which he claimed to have a proof, later
mathematicians were able to find a proof using methods known
to Fermat.

Nevertheless, the majority of mathematicians today
believe that Fermat myjst have made a mistake, and that the
proof he claimed to have found contained a well-concealed
fallacy. After all, they point out, even the Fermats of this
world do make mistakes, and since that day there have been
literally thousands of people (including some very good
mathematicians) who believed for a time that they had proved
the theorem, only to have an oversight later detected.
Opponents of their view are able to point out that in all the
history of mathematics it is difficult to find an equal of Fermat
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in elementary number theory, and that what he considered

a truly marvellous piece of deduction might well escape the
notice of men of comparable ability., Well, it is most unlikely
that this mystery will ever be cleared up, so you can quite
happily opt in favour of which ever conclusion appeals to you.

Fermat had earlier proved the special case of his theorem,
n = 4, This proof, using Fermat's own method of infinite
descent, is included in the appendix at the end of this article.
Any n>2 is either a power of 2, and divisible by 4, or
it contains some odd prime p, as a factor i.e. n = 4N
or n=pN where N is an integer. Any solution in integers

of
n n
X aof iy

N :
X=x , Y= yN and Z=zN such that

X4 + Y4 Z4 or Xp + Yp = Zp. Hence it would suffice

=z would immediately provide integers

to prove Fermat's result when n is any odd prime,

Although an enormous amount of unsuccessful effort has
been expended on this result, the labour has not been altogether
wasted. One of the most determined attacks on the problem
was made by the German Ernst Kummer (1818-1893). Not only
did Kummer succeed in disposing of the problem for a large
class of special primes, but ideas and concepts he introduced
in his attempt have proved of tremendous importance in
twentieth century algebra,

A few more results of a somewhat more technical nature ‘
are left for the appendix.



APPENDIX

Theorem I The general solution in positive integers of

- Proof,

x2 + yz = 22 , such that 2/x and

(x, y) = (x, z) = (y, 2) = 1 is given by
_ _ 2 2 2 2

X = 2uv, y = v -u, z=v +u

where u, v are any positive integerls, such that
vau, (u, v) =1, |

This is merely another version of the solution
obtained in the article, in a form required in
the next theorem. It was shown earlier that
every solution satisfying the stated conditions
is obtazlnab1§ in the form 9 9
st bk op o grode tulortbe
2 -0 : 2

where s and t are relatively prime odd
integers. If inthisweput s =u+v, t=v - u,

+ -—
szt) e (=s 2t
atively prime integers, we immediately obtain
the solution as stated in the theorem.,

so that v (& ) are rel-

Puzzles with cubes.

(1) Is it possible to pass a cube through a hole in a smaller

"~ cubel.!!? How?

(2) Twelve electrical resistances of 1 ohm each are situated
along the edges of a cube, and connected at the vertices of

the cube. What is the resistance of the whole system between
a pair of diagonally opposite vertices?

(Answer p 32)
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Theorem:

Proof:

There are no positive integers a, b, ¢ such that
2% +p* = c*. Infact (a slightly stronger result)
there are no positive integers X, y, 2 such that

x4 * e oL

Suppose there are solutions and let x, y, z be the
solution for which z is least. It is obvious that
(x,y) = (y,2z) = (x,z) =1 since any common factor
could be cancelled out yielding a smaller solution
immediately. Since x and y cannot both be odd,
let 2/x. Using Th.I we have

xzé 2uv (1), with (u,v) =1
5 _

y2=u -V2 (2)

Z =u2+v2.

From (1) uv is even and by considering remainders
on division by 4 in (2) we decide 2/v, 2Xu.

From (1) u=U2, v = 2V2 and (2) becomes
o e

Again employing Th.I we have
2V2 = 2rs (3) where (r,s) =1
y = r2 - 82(4)
u? =%+ s%0s)

From (3) r = Rz, s = s? and (5) becomes
#s s RE 45"

But this is another solution of the equation, with

2 2 2
UgEU =ugu <u + v2 = z, This contradicts
our choice of z as the smallest integer for which

the equation was solvable, and hence completes the
proof, 9.




For more detailed work on the problem it has proved
useful to introduce the following terms. If x,y and z
are prime to each other and to n, this condition is referred
to as Case I of Fermat's last theorem, If x, y and z are
prime to each other but one of them is divisible by the prime
n, the condition is called Case II of the theorem. (Casel
of the theorem is known to be true for all n <253, 000, 000,
but Case II has proved rather harder to tackle),

An example of a criterion for Case I of the theorem
which can be proved by quite simple elementary methods is
the following:

Theorem III. If n is an odd prime, and there exists an
odd prime p such that

% + g%+ h" = 0 (mod p) (1)

has no integral solutions f, g, h each not
divisible by p, and also such that, for every
integer u,

u = n (mod p) (2)

then Xn i yn 2 Zn Ubg (3)

has no integral solutions each prime to n.

Proof: Let x, y, z satisfy (3), and xyz £ 0 (mod n).
We may suppose that (x,y) = (y,z) = (2,x) =1
since any common factor can be first cancelled
out.

(y+z)oly z) = -xn,

n-1 n-2 n-3 2

where @(y,z) = y -y z, " 1y ;. ¥ &

Any prime factor common to y + z and ¢(y, z)
divides

Stow pERR SR MR ¢ . el
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Proof It cannot divide z since (y,z) =1, and if
Cont'd, it is equal to n we have n/x" contradicting
x &£ 0 (mod n).

Hence y 2 = 2" , oly,z) = A" where (a,A) =1,

Similarly %+ % ='bn,q)(z,x) = B"
and Xx+y-= cn,(p(x,y)=Cn,
Hence '

2x = o @ et an, 2y = cn+an-bn, 2z = DT N cn.
Let p be an odd prime satisfying the conditions,

From (3) and (1), p divides one of x,y and z.
We may assume p/x. Since

9% = b + ¢ + (-a)" is divisible by p, further
use of (1) shows that p divides one of a, b, and
¢ . Both p/b and p/c easily lead to contradiction.
But if p/a, we have y = -z,

ely,z) = riyn—l,cp(x, y)Eynm1 (mod p) so that

(AC—l)n_ n (mod p), which contradicfs (2)..\

These coniradictions establish the result.

The equation X"+ yn + z% = 0 is used in this theorem
instead of x + yn = 2" because of the greater symmetry.

To ’illustrate how the theorem works, take n = 11. Then
the prime p = 23 satisfies the stated conditions,

1
(since u1 = 0, 1, or -1 (mod 23) for each integer u)
and it follows from the theorem that Case I of Fermat's
Liast Theorem is true for n = 11,
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