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GAMES of STRATEGY ’

The playing of games has its origins in antiquity -
the ancient Romans, Greeks, and Chinese all played
games of varying degrees of difficulty. The characteristic
feature of all games is that they involve a certain amount
of conflict between the participants. This conflict arises
fron. the basic fact that each player wishes to win the game,
and win by as much as possible,

The games we are all familiar with fall into two broad
categories. '
1. Games of Chance - in which the players have no con-
trol over the choice of moves or over the outcome of the
game., All the moves are chance moves whose probabilities
of occurrence are known, In fact, the theory of probability
originated in an attempt by Pascal to analyse a game of
pure chance, this analysis resting on the notion of expected
value., Suppose n mutually exclusive events are possible
at each move and the probabilities of these events are
Pys pz,. e Yo pn, and al, 25 a3, seses, B are the re-

spective amounts a player receives in case of their occur-

rence, Then the sum a = P23, + Pya, PR o P2,

is called the expected value for the player. It represents

the fair way to estimate the stake of the player before the
occurrence of the event, Two-up and Snakes and Ladders
are examples of games of chance.

2. Games of Strategy - or games of ''skill", In these games
a certain amount of control over the outcome of the game
can be exercised by each player. At the same time, in

most of these games, the element of chance is not exclud-
ed. Examples of this type of game are Bridge, Chess, and



Poker. The precise study of such games has been describ-
ed formally as ''a mathematical theory of decision making
by participants in a competitive environment'', With this .
definition we may (and do) consider Economics and the man-
oeuveringof military forces as games.

In 1921 the frenchman Emile Borel made the first
attempt to describe games mathematically, and in 1928
the first great advance in this theory was made by the
brilliant Hungarian mathematician John von Neumann. The
theory did not receive much attention until the appearance,
in 1944, of the definitive study 'The theory of games and
economic behaviour' written by von Neumann and Oskar
Morgenstern,

We would now like to classify games of strategy. Firstly
we may distinguish between games according to the number
of players. For example, Patience is a 1l-person game,;
Chess a 2-person game, Bridge is also a 2-person game,
as North and South have identical interests, and collaborate
as one team. Similarly East and West may be considered as
one person, A study of economics in Australia could be con-
sidered as a 12, 000, 000-person game. Secondly, consider
the sordid question of money. The large majority of games
(including economics) are conducted in such a way that after
each play, each participant pays each other participant an
amount (possibly zero or negative) of money. If a 2-person
game is such that one player's winnings are the other player's
losses we call the game a zero-sum game. Most parlour
games, such as Bridge, are zero-sum games, However,
any reasonable economic theory will be a non-zero-sum
game as economic processes usually create (or destroy)
wealth,




A game is finite if it has only a finite number of moves,
each of which involves a finite number of alternatives,
Chess is a large, but nonetheless finite game. An example
of an infinite game is that in which each player picks a natural
number , the one with the larger winning the difference
between the numbers,

Finally, games may be classified according to the amount
of information available to each player regarding the past
and future choices of the other player. A game with
Perfect informa tion is one in which the players are given
complete information about all previous moves, be they
strategic or chance moves. For example, Chess, Draughts,
and Go, are perfect information games, whereas Poker
and Bridge are not.

We are now in a position to study games from a math-
ematical viewpoint., We shall confine our attention to 2-
person zero-sum games, of which we first present some
simple examples.

(1) A board is divided into 4 equal squares and in each
s quare a number is placed (see fig. ).
The two players, call them P and Q,

-5 110 move as follows: P chooses a row of
the board (e, g. he chooses row 1), and
3| -4 Q, without being informed of P's choice,

chooses a column (e. g. column 2). The
number lying in P's row and Q's column is
the amount Q pays P (in this case Q pays P 10).



(2) Two fingered Morra. (This game was played in ancient
Rome),
Each player simultaneously show either 1 or 2 fingers, and
at the same time guesses the number of fingers his opponent
will show. If only one player guesses correctly, he receives
an amount equal to the total number of fingers shown by
himself and his opponent; in all other cases the game is
drawn.l) As in the previous game, Morra may be represented
by a rectangular array, viz.

Q's possibilities
(11} (1,2) (2,1) £2;2)

P's (1,1) 0 2 -3 0

Possibilities (1, 2) -2 0 0 3
(241) 3 0 0 -4
(2,2) | 0 -3 4 0_|

Here a pair such as (2,1) is a possible move for Q; meaning
that he shows 2 fingers and guesses 1, Thus if Q shows(2, 1)
and P chooses (2, 2), Q pays P 4, Similarly if Q chooses 2
fingers and guesses 2, whilst P chooses 2 fingers and guesses
1, P pays Q 4.

(3) Consider the game in which P chooses a row from the
array.

2 1 10 11
0. =1 1 2
-3 =D =1 1

 —e

and Q chooses a column. The element common to both
the chosen row and column is the payoff from Q to P,

1) It has been said that an honest man is one with whom you
could play Morra in the dark.



Any 2-person, zero-sum finite game can be thought of as

a game of the above kind. A strategy for a player is a

plan, formulated before the play, for playing the game,

This plan should cover all possibilities which may arise and
must include all information which may become available during
the game, Suppose P has mdifferent strategies labelled 1, 2,
., M; Q has m strategies 1, 2,.,m. On the first move P
chooses strategy i say, and on the second move Q (without
being informed of P's choice) chooses strategy j say; and
suppose that @ then pays P an amount a (i, j) or equivalently
P pays Q (-a(i, j)l The game is then completely determined
by P's payoff matrix 1)

" 28" iy, 29=" "2 13 5 4
a(2,1) a(2,2)- - - - a(2,n)
M= - " _ - Y gl =
a(m,1) a(m,2) - - - a(m,n)

In this matrix, the second strategy of P (for example) is
represented by the row (a(2,1), a(2,2),-,a(2,n)) and Q's
first strategy by the column (a(1,1)

a(2,1)

(a(m, 1))so that if these are the
respective strategies chosen the payoff from Q to P is a(2,1).

If P chooses strategy i and Q chooses strategy j, then P
wants a (i, j) as large as possible - but he controls only the
choice of i. Similarly Q wants a(i, j) as small as possible-
and he controls only the choice of j. We now ask the basic

1)A matrix is simply an ordered array of numbers.



question of game theory: what guiding principles are there
which should determine the choices of strategy for each
player ? In particular, is there an optimal way of playing
the game? That is, can one give rational arguments in
favour of playing the game one way rather than another?

In special cases this question can be easily answered,
Consider game( 3)above. Each element of the first row of
the payoff matrix is greater than the corresponding element
of both row 2 and row 3. So P will do best (regardless of
what Q does) if he always chooses row 1 as his strategy-
this then is the optimal way for P to play. Similarly, each
element in column 2 is smaller than the corresponding
elements in the other columns. Thus Q's optimal strategy
is to always play column 2; any other strategy on Q's
part would be, by definition, a poor strategy.

Let us return to the general payoff matrix M. If P
chooses strategy i, he must be paid at least the smallest of
the numbers in the ith row; i. e., he must be paid at least
51;__111"1 2, .a}(lii, j) = minj a(i,j). Since P can choose i at will,

he can choose it so as to make minj a(i, j) as large as

possible. So there is a choice i for P which ensures that he

gets at least ) L
maxj minj a(i,j).

In a similar way (remembering the game is 0-sum),
there is a choice of strategy j for Q which ensures that he
gets paid at least maxj minj (-a(i, j)). That is, so that
P gets paid no more than minj maxj al(i, j). It can be
shown that

maxj minj a(i,j) € minj maxj a(i, 5y ' it
equality occurs, i.e,: if
(+) maxj min; a(i,j) = minj maxj a(i,j) = v
then P must realize that he can getv, and that he can be
prevented from getting more than v by his opponent. So,
unless he has some good reason for believing that Q will do
something wild, P might as well settle for v as his payoff,
and play to get it.

B



Similarly Q might as well settle for (-v) as his payoff.
In this case there are strategies I, J for P and Q
respectively such that
a(I,J) =v; and
a(i,J) < a(I, J) < a(l,j) for all i and j,
I and J are then the optimal strategies for P and Q respectively,
as they have t he following properties:

(1) If P chooses I, then no matter what strategy Q
chooses, P must be paid at least v;
(ii) If Q chooses J then no matter what strategy P chooses,

P cannot be paid more. than v ;
(iii) If P announces in advance that he will play strategy
I, Q cannot use this information to reduce P's payoff.

If condition (+) is satisfied, v 1is called the value
of the game and it represents the amount P should pay Q at
the beginning of the game in order to equalize the winnings
in the game, The payoff matrix M is said to have a saddle
point at I,d.

A few illustrations of what we have done may help the
reader to understand the subject.

The game with payoff matrix

12 13 12
11§ O 9

has two saddle points at (1,1) and at (1, 3) - the value of the
game being 12. So P's optimal strategy is to always choose
rowl; Q's optimal strategy is always to choose column 1
(or column 3),

So if a game has a saddle point it is a simple matter
(in theory at least) to find the optimal strategies for each
player - all we have to do is look for an element of the



payoff matrix which is both the minimum of the row it

is in and the maximum of the column it is in, Now it can be
s hown that a game with perfect information does have at
least one saddle point so that one can find optimal strategies
for these games. As observed previously chess is a.game
with perfect information, Thus to find the optimal strategy
in a game of chess we form the payoff matrix, (consisting
of N rows and N columns where N is the total number of
strategies available !) whose entries consist of +1; 0 or
(-1) depending on whether P wins; the game is a stalemate
or draw, or Q wins. To find the optimal strategy for P

we find a saddle point of this matrix, Of course such a
saddle point has never been found because of the immense
size of the payoff matrix,

Having thus dispensed with games with saddle points,
we turn to those games whose payoff matrix does not have
a saddle point. One such matrix is _
1 -1
___:1 1 1 s as
+ in this case -1 = max; min; a(i, ), min; maxj a(i, j)= +1
What strategy should P adopt in playing this game? First
of all, it is obvious that it makes no difference whether
P chooses row 1 or row 2, as in either case he will receive
+1 or -1 according as Q makes the same or different choice.
However, if Q knows what choice P will make, then Q can
ensure (by making the opposite choice) that P will have
to pay him 1. Hence P is at a distinct disadvantage if Q
discovers his strategy. So it is of the utmost importance
to P that he prevent Q from making this discovery, and the
best way of ensuring this is to arrange the situation so that
even P himself does not know what strategy he will play
in advance of the play! One way to do this is to decide what
play to choose by means of some chance device. In this
case P could throw a coin, choosing strategy (or row)lif a
head shows and strategy 2 if a tail shows.

it
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Obviously Q should also adopt this method of play. Thus the
probability that P chooses row 1 is %, and we observe that
the mathematical expectation of P, whatever Q does, is 1-

(2) +(-1) *(3)'=0. In fact this is the only way P can play the
game without running the risk of losing if Q discovers what he
(P).is going to do.

' - Let us return to the game mentioned in the beginning

whose payoff matrix was iis)
' =5 10

A 3 -4

‘Since the game has no saddle point if would seem desirable

that both P and Q play the game usirg chance devices to

decide on their choice of strategy. Suppose P decides to

play strategy 1 with probability x, so he plays 2 with

- probability 1-x, Similarly, Q plays 1 with probability Vs

and 2 with probability 1-y. The expected payoff to P is then:

E(x,y) = -5xy + 10 x(1-y) + 3y(1-x) -4(1-x)(1-y)
-22 x y + 14x + Ty -4

= --22 X - 7 = 14 5
o 3y )
Thus if P takes x = 1_ » he ensures that his expectation will

be at ;Ijeastrf,i_ . 22 Moreover, he cannot be sure of more

than IT; for, by choosing y = % » @ can ensure that P's

expectation will be exactly 1. Indeed, by choosing y such

that f)’ - é’% 3 and fX- = 27—2} ve the same sign, Q can even
reduce P's expectation below 1T . So P might as will settle
for 7 and play row 1 7 times in 22, and row 2 15 times in
22.

Similarly, Q might as well settle for '"1§1' and play his first
strategy 7 times out of 11 and his second strategy 4 times out
of 11. It now seems reasonable to call these methods of
play the optimal strategies for P and Q, and to call 11 the
value of the game,




Consider now the general payoff matrix M, and
suppose it has no saddle point. By a mixed strategyfor
P, we shall mean an ordered collection (x1, X2, .. ,xm)

of non-negative real numbers satisfying the condition

By FXgh, o 205 1, The ith element xj of this collection
represents the probability that P chooses the ith row as
his strategy on a given move. The strategies considered
in the previous games where there was a saddle point

were also of this kind - as there we always chose one
row, say row k , and this is equivalent to playing the
mixed strategy (x1,X9, «. , ¥, ., ¥ Where x; =1 and x;
=0 if i # k. This type of strategy is called a pure strategy.

Suppose then that P plays the mixed sirategy X =
(X1s4.05Xy) While Q uses the mixed strategy Y=(y,.., Vi)
The mathematical expectation of P is then

n m
= =2 1.1 . .

E(X,Y) =i = allj) % yj,

If for some X* and some Y*, we have

(++) E(X, Y¥)g< E(X*, ¥Y*) € E(X*,Y).

for all mixed strategies X and Y for P and Q respectively,
then we call X* and Y* optimal(mixed) strategies for P and
Q., and we call E(X*, Y*) the value of the game, By
using X* P ensures that he will receive at least E(X*, Y*)
regardless of what @ does; similarly, by using Y*, Q can
keep P from getting more than E(X*, Y*), Thus E(X*, Y*)
is the amount P can reasonably expect to get (he can get

it by playing X*) and Q can hold him down to it by playing

Y=,
If it happens that both the numbers
vy =max min E(X,Y)
X Y
Ze v, *min max E(X,Y)

are equal, then there exist mixed strategies X*, Y*
satisfying (++) - so in this case the game has a solution.

wiel



It can be shown 1) that for any 2-person, zero-sum, finite
game v} is equal to vy - this is a statement of the
fundamental result of game theory, the MINMAX theorem.

Using the MINMAX theorem, we see that there is
an optimal strategy for the game of 2-fingered Morra
(in fact there are many such strategies for this game).
The particularly clever reader can show by first of all
observing that the value of the game is 0, that this
optimal mixed strategy is (0,%’,%, 0) for both players.
So an optimal way of playing 2-fingered Morra is as
follows: roll a dice, if either a 1,2 or 3 appears, show
1 finger and guess 2 ; if a 4 or 5 appears, show 2 fingers
and guess 1; if a 6 appears, roll again.

The mathematical theory of games has been
developed to a stage where many of the mare difficult
games can be studied quite successfully, For example,
n-person games and infinite games are known to have
optimal strategies in general; continuous games (in which
the sums above are replaced by integrals) may be analyzed
via a MINMAX theorem similar to the one we have seen.
The theory does not yet extend to non zero-sum games 2)

In fact, very little is known about such games. These

are just the games which would be important in any study

of economics based on game theory. Even if such a theory
could be developed, the economic structure of our society

is so involved that the theory could only hope to give quite

vague lines for economists to follow, Conceivably, the

theory of games could be put to some use in competitive society.

1) The proof involves a study of the geometry of n-dimensional
space - this includes the algebra of matricies.

2) A typical example of a non-zero sum game is Russian
roulettie,
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Consider, for example, the situation in the U, S, A,
where there are effectively only 2 mail-order companies -
so that we have a 2-person, zero-sum game. An example
in which competition arises is the timing of the publication
of the winter catalogue. If one company distributes its
catalogue before that of its competitor, it is presumed
that the cream of the buying will be captured. On the
other hand, if this policy is pursued too far, the
catalogue loses its effectiveness because it attempts to
sell woolen underwear and snow shovels in the middle of
summer, Actual practice has not, however, settled
down to an optimum but to a combination of loss from both
scores - publication at the same time, moreover early in
June- just before summer. Game theory indicates a
MINMAZX solution of the mixed strategy - a solution which
is unlikely to be adopted by either company:

The author of the above article, Dr J.D. Gray, a lecturer
at the University of New South Wales, is an expert in an
important field of mathematics known as functional analysis.
He received his Ph. D. degree from the U.of N, S, W. earl-
ier this year after study and research in both America and

Australia.

Correct Solutions

il“he; following students submitted correct solutions of the
indicated problems set in the last issue of Parabola,

M. Doyle (St Joseph's College, Hunter's Hill) J111.
R. Sebesfi (St Joseph's College) J111

R. Smykowsky (St Joseph's College) J111

D. Nash (Parkes H.S.) 0113, 0115, O116 and O120
J. Armstrong (St Joseph's College) 0117 and 0120

S. McHale (St Joseph's College) 0117 and O119

D. McKenzie (St Joseph's College) O 0117 and 0120.

sd 2«



