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SCHOOL: MATHEMATICS COMPETITION

Junior

1 (1) a, b are integers such that a + b and

© 4+ b° are both divisible by 7. Prove that a and
r

are both divisible by 7.

oM

1 (ii) 1Is the statement stillwlid if each 7 1s
replaced by 49?

Answer (i) Both a2 + b2 and (a + b)2 are

divisible by T7; hence, their difference, Z2ab,

is divisible by 7. If 2ab is decomposed into its
prime factors, 7 must occuryghence it is a factor of
either a or b. But since it is also a factor of
their sum it must divide both.

Answer (ii) The above argument does not apply for
the number 49 since it is not a prime. In fact the
statement is not true, since if a = 42, b =T,
both (a + b) and a2 + b2 are divisible by 49 but
neither a nor b is.

2 (1) A rectangular room is paved with square tiles

of the same size. Show how to draw a right-angled

triangle such that:

a) the vertices of the triangle are on corners of
the tiles;

b) the hypotenuse lies along the wall of the room;

c) the ratio of the two smaller sides is 2:3.

2 (ii) Can you generalize for an arbitrary ratio
m:n?
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Answer (1) Let OPA be such a

triangle, with
OM¥ = h units,
MA*® = 1 units and
MP¥ = k units
(35 AR - N ( 1 unit is the
A — ¥ length of the side
of a tile)

Then (by elementary trigonometry or by using similar
triangles)

AP* _ PM¥ _ AM#*

op* = om* = wpw (= tan 8)
% - % = % whence l:k:h = 4:6:9

Thus the smallest such triangle has 1 = 4, k = 6,
and h = 9,

Answer (ii) Similar working gives

m _ 1 _ k TR e
7 = e =55 whence 1l:k:h m :mn:n
the smallest triangle having 1 = mg, k = mn, and
2
h = n".

3 At a party each boy shakes hands with an odd
number of girls and each girl shakes hands with an
odd number of boys. Show that the total number of
children at the party is even.

Answer Let the total number of handshakes (to be
precise, boy-girl handshakes) made by all the boys
be N. If there are m boys present, N is the sum of
m odd numbers so its parity (i.e. oddness or
evenness) 1s the same as m.
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Now N is also the number of such handshakes made by
the n girls present. Therefore by the same argument
N and n have the same parity.

Hence m and n are either both odd (if N is odd) or
both even (if N is even)and in either case m+n is
even.

An alternative wording of this argument is contained
in the answer to problem 0117, in this issue.

|
4  In the triangle!ABC let AB* > AC¥, and let D be
the foot of the perpendicular from A onto BC.
Prove that:
AB¥ - AC¥* < BD* - DC¥*,
AB* denotes the length of AB.

Answer 1 By Pythagoras' Theorem
AB*2_Bp¥2=AC*2_cD*° (=AD?)

A
Hence AB*2_AC*2=pD¥2_CD¥*°
(AB¥-AC#%*) (AB¥+AC¥*) =
. (BD¥—CD* ) (BD¥*+CD¥)
* *
1D ¢ (AB*—AC*)=§%¥§%%¥(BD*—CD*)

and since BD¥ + DC* = BC¥ < AB*¥ + AC* (one side of a
triangle is less than the sum of the other two) the
first factor on the R.H.S. is less than 1, whence
the result.

Answer Puzzle: Find the Digits (see p. 16)
A=1,B=2,C=5,D=3,E=7,F=28,0G6=6,H

L.

Answer The Frustrated Hiker (see p. 1T7)

From any point 10 + 5/n.m miles from the south pole.
Here n is any positive integer. Also, of course, the
north pole is one answer.
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Answer 2 A If C is an obtuse angle,
the result follows
immediately since

¢ D AB* - AC* < BC¥ by the
5 triangle inequality.

A If C is an acute angle,
construct E on BC so
that DE* = DC¥., By
congruent triangles ADC
and ADE we have AE¥ = AC#,

x_B E/ D c (Hence AE* < AB* and it
is easy to see that E
does not lie on CB produced because of the
obtuseness of Z ABX.) In AABE we have
AB*¥ < AE¥% + BE#¥*
AB* - AE¥ < BE¥ = BD¥* -~ DE¥ = BD¥ - CD¥,

5 You are given five golfballs, all of which
appear the same. You know that three of the balls
have the same weight, one is lighter and one is
heavier, but together these last two weigh the same
as two regular balls. Show how to decide in three
weighings which one is the light ball, which one is
the heavy ball and which ones are the regular balls.

The only equipment available is a balance without
weights.

Answer 1 Weigh the first ball against the second
and then the third against the fourth. Label the
fifth ball E. Of the first two weighings at least
one pair failed to balance, and possibly both.
Hence these balls can be labelled A,B,C and D in
such a way that A > B (i.e. A is heavier than B)
and either C > D or C = D (i.e. C and D are the

same weight).

Cont.

.34,



For the third weighing, weigh C against E.

Case 1 If A > Band C > D, E must be a regular
ball. Hence the third weighing identifies C. If C
is regular, D is light and A is heavy. If C is
heavy, B is light, and A and D are regular.

Case 2 If A > B and C = D, C is regular so that
the third weighing identifies E. If E is light, A
is heavy and B regular. If E is regular A is heavy
and B is light. If E is heavy A is regular and B is
llight .

Answer 2 Label the balls A,B,C,D and E. Put A and
B together in the L.H. scale pan, and C and D
together in the R.H. scale pan for the first weighing.
For the second weighing, compare A and B, and for the
third weighing compare C and D. If A+ B =C + D
then one scale pan has two regular balls, the other
has both the heavy and the light ball. The heavy and
light balls are identified in whichever of the second
and third weighings does not balance.

If A+ B >C + D then the 1light ball is not on the
L.H. pan. 1If A and B balance they are both regular.
If they do not A is heavy and B is regular.

Similarly as the heavy ball could not have been on
‘the R.H. pan in the first weighing, C and D are
either both regular, or one is regular and one light,
and the third weighing shows which situation applies.
As A,B,C and D have all been identified, E is also
known.

A similar discussion applies if A + B < C + D on the
first weighing.
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SCHOOIL, MATHEMATICS COMPETITIO&
Senior

1l For which positive integers m and n is

mn < nm?

Answer ! < n® SR 1 B

Taking natural logarithms, n log m < m log n and
-l%%iﬂ < ;9%—3. This suggests we discuss:

y = EQ%_E for positive real x. y' = (1 - log x)/x°.

Thus y' = 0 at x = €, Yy = 1/e; since y' changes
+, 0, - as x increases through e, this is a
maximum point,

We can produce the rough |
sketch as shown. (The A
scales on the two axes are
not the same.) Since

y' < 0 for all x > €'y

1s monotonic strictly
decreasing for x > e.

Hence (1) holds for all

cases where-m > n and

n > 3,

Now we have to discuss

merely the special cases where the positive
integers 1 and 2, which are less than e, occur,

If m = 1, (1) holds for all n > 1. As (log 2)/2 =
(log 4)/5,.from our first conclusion, (1) holds
with n = 2 for all m > 4, Finally, (1) holds
form = 2, n = 3. Taking (mn)th roots, from (1)

we get that ml/m> nl/n. So we could have answered

the question equally well by considering y = x1/X,

Few candidates solved this problem although many
were at least led to state the answer by induction
(not mathematical induction) after testing for a few
specific values of m and n.
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2 (i) a, b are integers and p is an odd prime which

divides both a + b and a’ + b°. Prove that p
divides both a and b.

2 (1i) p is a prime greater than 3, and a, b, c are
integers such that p divides each of a + b + c,

a2-+ b2 +'02 and a3 + b3 + c3. Prove that p

divides each of a, b and c.

Answer (i) Let p|x mean "p divides x". Since
p|(a+b), p (a+b)2; thus p[(a2+b2+2ab). As

p](a2+b2), pl|2ab. As p is an odd prime, plab.
Hence p divides at least one of a and b. If, for
instance, p|a, then, as p|(at+b), p|b. (Similarly,
if p|b, we find p|a; but, because a and b occur
symmetrically in this question, there is no need for
us to go through the argument a second time.) ‘
Hence p divides both a and b.

2 2 2

Answer (ii) (a+b+c)3 = a3+b3+c3+3(a2b+a c+tb“c+b“a+

c2a+c2b) + babec.

(a+b+c)(a2+b2+02) = a3+b3+c3+(a

czb).
From the secondidentity we can conclude that

pI(a2b+a2c+b20+b2a+c2a+czb); hence, from the‘first

identity we get that p|6abc. Since p is a prime
greater than 3, p$ 6. Hence plabe. Thus p
divides at least one of a, b and ¢. If pic, then,
since p|(at+b+c), p|(a+b) and, since p|(a2+b2+c2),

p](a2+b2). By 2(i), p divides both a and b. Hence
p divides each of a, b and c.

2b+a20+b20+bga+02a+
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Candidates found this the easiest question on the

paper and there were many correct answers. (Note
that an easier form was set for the Junior
Examination.) Some people mentioned a
generalization: If p is a prime greater than n, and

a1, @y, .5 @, are integers such that p divides

a.™ then p divides

each of
i

f=
each of a1, a

e~

(N

=2
ays ) a;%5 wee
i=1

i=1

2, e % 9 5 n.

3 Consider the set of equations:

allxl + a12x2 + a13x3 = 0

azlxl + a22x2 + a23x3 =0
-+ 4 =

a3lxl a32x2 a33x3 0

in which 8115 8505 dgq- are positive, all other

coefficients are negative, and the sum of the
coefficients in each equation is positive. Prove
that the only solution of these equations is

X = X, = x3 = 0.
Answer Plrst of all, 1t 1s obvious that
Xy = X, = x3 = 0 is a solution. It 1is the only
solution if the determinant
%11 %12 213
8 R - 855 83| # 0.
431 32 %33

Cont.
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Adding columns 2 and 3 to column 1 we get

| ayjtayota 3 81p 233

agytagothog “Bio " 8o

+ +a. -

BaiTRgaTlad Baa. £33

where now each element of the filrst column is
ﬁositive. Expanding by the first column,

A

| = (ay *a)p*ag3) (8y5233-835353) -
&

|&| =

(a21+a22+a23)(a12a33—a32a13

(a31+a32+a33)(a12a23-a22a13).
As (a22+a21+a23) >0, @a,;< 0 and as3 < 0, we have

2y, > la23l and similarly a;5 > |a32|; hence

855833 > 353835 and so (all+a12+al3)(a22a33-a32a23)
> 0. It is easy to show that the two remaining
terms in the expansion are. positive by considering
the signs of each component inside the second pair
?flbrackets in each case. Thus |A| > 0 and so

Al # 0.

This question was poorly done, in general, with
many getting no farther than saying |A|] # 0 (or its
equivalent, if the determinant notation was
unknown). Very few mentioned the generalization to
n equations in n unknowns.

One of the successful solvers used a completely
different approach: Consider all possible ways 1in
which the three elements of the solution triple,
X1s Xos X3, can have values that are positive,

negative or zero. (Two examples: One is (-) and
two are (+); one is 0, one is (+) and one 1is (=).)
Then eliminate all cases except the one where all
are 0. (The only difficult case is where all are
(+), or, equivalently, all are (-). Can you deal
with this case?) '
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4 (i) Prove that no 3 dlagonals of a regular
heptagon (7-sided polygon) are concurrent at a
point other than a vertex of the heptagon. A
diagonal is a line connecting two non-adjacent
vertices.

4 (ii) How many points of intersection of pairs of
diagonals lie within the heptagon?

4 (1ii) Into how many compartments is the heptagon
dissected by the diagonals?

4 (iv) Assuming that for n odd no 3 diagonals of a
regular n-gon are concurrent, generalize (ii) and
(iii) for the regular n-gon.

Answer (i) We would probably draw a sketch to start
our thinking on the problem. (A sketch is not
reproduced here.)

A diagonal joining one vertex to another next but
one round the heptagon cannot be involved: Consider
V1V3, say, where the vertices are named Vl’ V2, s

V7 in order round the heptagon. The only diagonals
crossing it inside the heptagon are those from V2
and no two of these can intersect both at V2 and on
VlVB' All told, there are 21 points of internal

intersection on such diagonals (4 on any one.)
Suppose 3 of the remaining diagonals are

concurrent at a point other than a vertex - 6
vertices will be involved in producing these
diagonals. (Note that we cannot have 4 diagonals

SO0 concurrent as there are not 8 vertices to produce
them.) This point represents the coalescence of the
3 possible points of intersections of pairs of the

3 diagonals. By symmetry, there must be 7 such
points of concurrence, representing 21 possible
points. But this would give 21+421=42 possible points,
when we know from 4(ii) that there are only 35.
Hence our supposition is wrong and the problem is
solved.

Cont.
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4 (iv) part (ii) First solution We set up a

"counting process" to find P, the number of points
of internal intersection. Consider all of the

(n - 3) diagonals from'Vl in turn. V1V3 is crossed

inside the n-gon only by diagonals from V2 and so
there are (n - 3) points on V1V3. VIVH is crossed

only by diagonals from V2 and V3 but one from each
of the points (namely V5V, and VBVl) intersects at
a vertex; thus there are 2(n - 4) points on vlvu.

Continuing in this way, there are 3(n - 5) points

on V1V5, waner 2l == 2Y(2) polnts on ViV, _5, and

(n - 3)(1) points on Van_l. (Are you sure you can
give the argument for VlVS?) The sum of these is

S (n-3)+2(n-4)+3(n-5)+ ... +(n-3)(1)
(n-2-1)+2(n-2-2)+3(n-2-3)+...+(n-3) (n-2-(n-3))

(n—2)(l+2+3+...+(n-3))-(l2+22+32+...+(n—3)2).
We look up a text-book to find that
(1+2+...4+N) = N(N+1)/2 and

(1242%+...4N°) = N(N+1)(2N+1)/6.

(See, for example, Courant and Robbins: "What is
Mathematics?" pages 12 and 14).

J. 8 = (n-2)(n-3)(n-2)/2 - (n-3)(n-2)(2n-5)/6
(n-2)(n-3){3(n-2)-(2n-5)}/6
(n-1) (n-2) (n-3) /6.

S 1s the number of points on diagonals from Vl'

wonn

For the n vertices, it seems we would have nS

points, but then each point would be counted 4 times
(each point lies on 2 diagonals and each diagonal is
considered twice - once from each end.) Hence

P = nS/4 = n(n-1)(n-2)(n-3)/24.

Thls is a surprisingly neat answer after these long
computations and, as always in such a case, we wonder
i1f there is a neater way to obtain it.
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Second solution Any internal intersection is

connected with U4 vertices, the ends of the 2
diagonals involved. It is easily seen that their
6 mutual joins will produce exactly one intersection

inside the n-gon. Hence there are (n) points.
4

This 1s a good example of a problem which can be
solved in a straightforward, tedious way but which
can be solved much more elegantly on adopting a
different approach. It often happens that a more
general approach and/or taking a "global view" of
the situation leads to elegant solutions. In

4y (i), for example, use of the symmetry of the
problem leads more quickly to a solution than does
chasing around a few angles in search of a
contradiction.

Answer 4 (iv) part (iii) A textbook gives Euler's
formula specialized to a plane: "vertices" -
"edges" + "faces" = 1 (Courant and Robbins, page
239). Now "vertices" = P+n (the n for the vertices
of the n-gon. The number of "edges" on any one
diagonal equals the number of points on it plus
one. Adding, we get (2P+D) on all the D diagonals.
As there are n sides to an n-gon,

"edges" = 2P+D+n

.. "faces" = (2P+D+n) - (P+n) + 1 = P+ D + 1.
Now D = (n)_ n since there are (n)joins of the
2 2

vertices of the n-gon, of which n are slides of the
n-gon. (Another argument: There are (n-3) diagonals
from any one vertex; considering the n vertices,

D = n(n-3)/2, the half since each diagonal is
counted twice.) Hence the number of compartments

= (i) - (n) -n + 1. (This can be factorized to
2

(n~1)(n—2)(n2-3n+12)/24 which does not seem to be

an especially interesting form of the result.)

Cont.
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Answer 4 (ii) and (iii) We can read off the results,
35 and 50, respectively, from the general case above
by putting n = 7. As an alternative, in desperation,
we can count up on our initial sketch; most candidates
did this and it's interesting to note that more
decided on 49 compartments than on 50.

Question 4 was found to be the hardest. Although the
first method for P was produced (but without the
summations being done), nobody gave the second
solution.

5 Four equal weights are placed at different
points on the edge of a uniform circular disc such
that the centre of mass of the system is at the
centre of the disc. Show that the weights must 1lie
at the vertices of a rectangle. i

Show by an example that it possible to arrange 6
equal weights on the edge of a uniform circular disc
so that (i) the centre of mass is at the centre of
the disc, and (ii) it is not possible to remove two
weights without displacing the centre of mass.

Answer 5 (i) Clearly, by symmetry, the centre of
mass of the disc itself is at its centre. Take 2 of

the weights, my and m, say, that are not on a

diameter, and let the diameter which 1s the
perpendicular bisector of their joln be the x-axils.

Let weight m, be at (xi,yi) for 1 = 1,2,3,4. Thus

X, = X, = a, say, and Y1 = =¥, = b, say. So that
4

iglmiyi = 0 (as given m; = m, = my = my,) we must

have y3 H Sp = 0.
Cont.
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Hence,as the weights are on a circle, X3 = X So
1' ¥

that izlmixi = 0, we must have x5 = x) = -a.

Hence the weights are at (a,b), (a,-b), (-a,b),

(-a,-b) and so lie on a rectangle.

Answer 5 (i1i) There are infinitely many examples.
One is to have a weight on the edge at either side
of the x-axis at each of x = -r/2, -r/4, 3r/4,
where r is the radius of the disc. (Any such
triplet of x-values adding to 0 will do, provided
none is 0.) :

A more symmetrical arrangement is obtalned by
putting 3 weights so that their radii from the
centre are at 2n/3 (the weights will be at the
vertices of an equilateral triangle), and another 3
similarly arranged, displaced round the disc, but
not so that the 6 form a regular hexagon. (We
could also have a "no-displacement" case and so 2
welghts at each of the 3 points, since this part of
the question does not require the positions to be
different.)

A number of people solved 5(ii) but few 5(i). Most
approached part (i) by a building-up process: first
putting on one weight and balancing it by a second
diametrically opposite, and then placing a third
anywhere to be balanced by a fourth diametrically
opposite, whereas the question did not stipulate
anything about where the centre of mass would be
with only two welghts.

Answer Obliterated Multiplication (see p. 28)

Seven hundred and seventy-five multiplied by
thirty-three.
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