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IMPOSSIBLE CONSTRUCTIONS

It 1s fairly generally known, even amongst not
very advanced students of mathematics, that in
addition to the many ingenious constructions with
straight edge and compasses which were discovered
by the ancient Greeks, there were a number of
similar construction problems which defied all their
efforts, and the efforts of later generations of
mathematicians for something like 2000 years, until
it was eventually shown that these constructions
were in fact impossible. Examples include the
problem of trisecting a given angle, and the problem
of duplicating a given cube (i.e. given a line
segment AB 1t is required to construct a line
segment CD such that the cube whose side is CD has
exactly twice the volume of the cube whose side 1is
AB). The nature of the impossibility proof is not
nearly as generally known; it 1s.the-aim of.this
article to outline the ideas of the proof, although
some of the algebraic details will have to be
omitted.

In spite of the existence of this proof, from
time to time people come forward claiming that they
have discovered how to trisect angles. Examination
of their attempts usually shows that they have not
grasped the limitations implicit in the Greek notion
of a construction. . .In particular it is imperative
that the construction involve only a finite number
of operations. The only allowable operations
consist in drawing the straight line through two
previously constructed (or initially given) points,
and drawing the circle whose centre is a
previously constructed point, and whose radius is
the distance between two previously constructed
points.



Hew points are “econstructed®” If they are polnts of

intersection of two such straight lines and/or
clreles.
A rnecessary ingredient of
the discussion 1s the
P(h, &) fdew "int roqiiced by
Descartes Into, Feomelry .,
namely, that it 1is
useful to specify the

f
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: pogsition of. g polot. by

plis Aollisg ol giving its "co-ordinates"
J 519 relative to a pair of
(73 T | intersecring, straight

lines (axes).

I Flga P9 lo%he? 247400t 1Ane OiME is the "z-axlis",
andothe” dtralght  1line Oy at right angles to Ox lds
the "y-axis".

OA 9%‘a l1ine segment-of~unit length. Given any
pednatUe 2let- ' PH Be-perpendicular to Ox. Thep the
x2¢o2erdinate” ot P is 'the number, h, of units of
length in the "directed" line segment OM. (The
"directed" here means that the co-ordinate has a plus
oriminus sign attached according as M lies to the
right or left of 0.) Similarly the "“y-co-ordinate”
of P 12 the number, k, of units of lepngth 1in the
directed line segment MP, (It 1s positive if P lies
above the Xx-axis and negative 1f P is btelow the
x-axis.) There is a (1-1) correspondence between
pdimt evel Ehe ‘plane and' ordered “palirs of real
numbers (h,k).

B mambier R, Is called a constructlble number 1f
(after the wnit “interval O& 1s given) it is possible
to construct a line segment of length h units,
Cleamwliy fhae congtructible points in "Lthe plane are
just those points whose co-ordinates (h,k) are both
constructible numbers. We seek some characterisation
which will enable us to distinguish which numbers are
constimwct lovlke’,



As a first step in this search we observe that if
h and k are constructible numbers, so are h + kK,

h - k, hk, & (k # 0), and /i (Fig. 2, Fig. 3, Fig. A

Y 2k : Tass
FIG. 2. DX* = hk PIG. 3. AX* =1

Construct line AE, make

BB* ="T1, BC*"& k, “Jolin QD
e Construct BX parallel to CD
P cutting AD at X.

PRG 74,

Let us denote by & the set of all numbers
obtainable from 1 by using any finite sequence of
operatiouns of addition, subtraction, multiplication,
division or extraction of squgre roots.. (For

2+4/3 + 5
T
R

example, the number belongs to E,.) Then

the above cobservation shows that all numbers in 2
are constructible.



Conversely, it is not very difficult to show that
all constructible numbers are in the set Z. To do
this we establish the following lemma.

Lemma If after some sequence of constructlions all
constructed points have both co-ordinates in the

set ®, and if a new poilnt P 1s constructed as the
intersection of a palr of lines and/or circles, then
the co-ordinates of P belong to the set E.

If, to start with, we are given only the unit
interval, with end points (0,0) and (1,0), the
condition of the lemma 1s obviously satisfied, and
it 1s clear that we can never construct any point
whose co-ordinates do not belong to E. We proceed
to outline the proof of the lemma.

Most of our readers will not need to be reminded
that associated with any curve in the Cartesian
plane there is an equation involving x and y which
is satisfied by the co-ordinates (x,y) of a point P
if and only if P lies on the curve. Straight lines
have equations of the form Ax + By + C = 0 (1) and
circles have equations of the form

x2 + y© + 26x + 2Fy + D = 0.  (2)

Proposition 1 (a) Let 2 be a straight line passing
through the points (a,b) and (c¢,d), where all of

g, b, ¢ dud d beldng tec the- set k... LThen % has :an
equation of form (1) in which A, B and C all belong
o Es




(b) Let k be a circle with centre
(a,b) and radius r where a, b and r belong to b.
Then k has an equation of the form (2) in which
G, F and D all belong to b.

Proofs 1(a) The equation (d-b)x + (a-c)y + (bc-ad)
=.0 is of form (1) and 18 therefore the eguation of
a straight llne. 1t is obviously satisfied by
x='ag, yo='b,; and:by x= e, y =:d, so-the line
passes through these two points. The coefficients
A = (d=¢c), B'= {(a-c), C = (bc-ad) belong:to E.

1(b) (Pig. 5). By applying Pythagoras
theorem to the triangle CMP,

Y p(x,yy we see that P(x,y) lies on the
N clrelenif and only if
y-4 2 2 gold
gt (x-a)® + (y-b)~™ = r~. This
gives an eguation of type (2)
with G = -a, ¥ = -b and
0 . D = a° + b° - r° which all
€-.-» X belong to E.
X-—-a
#iG. 5.

Proposlition 2 A polnt of intersectlion of two lines,
a line and a circle, or two circles, having
equations of forms (1) or {(2) with -ali coefficlents
in &, has co-ordinates belonging to E.

Proof We 1llustrate by taking a line
Ax + By + C = 0 (1) and a circle

g Y2 + 26Gx + 2Fy + D = 0 (2) with all of

X +
A, B, C, D, F, G in b.



Solving these simultaneous. equations for the
co-ordinates (x,y) of the points of intersection
yields

o G B2G+ABF+[(AC+B2G ABF) ~(A +B° )(C -2FBC+B D)]2
A%+p°
and a similar expression for y (= céAX), which are

P

clearlyi #nig,

We can safely leave the similar treatment of the
other two cases to our readers. It should also be
clear-that theclemma-is a-simple consequence of
propositions 1 and 2.

The numbers in % have another property which we
now mention.  'Consider; for example, the number
x =v2 + /3 + V6 =+v2 + V3 + /2 . /3 which is
certainly in . We can remove surds by obtaining
in_guegcesslon

il
W mofade
i (x°-2/3x+3)
1427743
8-x°-3 = -2x/3-4/3
= _ x2__5
/3 = %
1 GH918129,0
3 =low
Ux“+16x+16

x*_20x%_148x-23 = 0.

This shogs that x is a root (or zero) of a poly-
nomial x3-22x2-U8x-23 whose coefficients are
integers and whose degree is 4, a power of 2.
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Investigation reveals that x does not satisfy any
such polynomial equation of smaller degree (with
integer coefficients).. It:is ealiedithe minimal
polynomial satlisfied. by x4-.8nd ¥rig-8alded apn
algebraic number of degree 4. (Note that x
satisfies many polynomials of any larger degree
obtalned simply by multiplying its minimal poly-
nomlal by _an arbltrary poliynomial. Note also that
minimal polynomials can not be factorised into
factors with integer coefficients. (Why?)
Because of this they are called "irreducible
polynomials",)

The following statement may now seem plausible.

Th. Every number in Z is an algebraic number whose
degree is a power of 2. That is each such number

s a zero of an irreducible polynomial with integer
coefficients whose degree is a power of 2.

We shall not prove this result. We draw the
immediate inference:
Th. If x satisfies an irreducible polynomial
equation with integer coefficients whose degree is
not a power-of-2,-then x-is not—-a-eonstructible
number.

As a particular example, consider x = 3/3. The

minimal equation satisfied by x is x3 - 2 =_0 .and
it follows from the above theorem that ¥2 is not
constructible. This proves the impossibility of
duplicating the cube, which requires the
construction of a line segment whose length is
37 times the given one.



What about trisecting angles? If there were
a general method of doing this, 'sigte an- angle. of
600 is very easily constructed we could alsc
construct an angle of 20°, /EAP, where AB is the
given unit interval and AP 15 also of unit length.
By elementary trigonometry,
the Xx-co-ordinates of P

would then be x = cos 2009,
P(x, ) In the trigonometrical 3
it fdentity cos 36 = 4 cos¢
3 l - 3 cos @ put 6 equal to 20°
A 57° !:B to obtain :
M ~ %-:llx3_3x

Bpd I lofis WP OIH:

It 18 not difffcult to prove that the polynomial
on the left 1s irreducible, and it then again
follows from the theorem above that x is not
constructible. Hence there cannot exist any
construction for trisecting angles.

Penniles Si1x pennies are arranged in a triangle as
shown. The puzzle 1s to move them into the

circular formation 1in the
smallest number of moves.
Each move consists in
gl¥ding “one 'penny, “without
disturbing any other, to a
new position in which 1t
touches two others.

(Answer p. 28)



