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CONGRUENCES

As will be known, when we write 12 = 7
(modulo 5) we are expressing the fact that both 12
and 7 have the same remainder when divided by 5.
Alternatively, the statement means that 12-7 is an
exact multiple of 5. Indeed we can also write it
as 12-7 = 0 (mod 5). We also, of course, can write
12 = 12 (mod 5), 12 17 (mod 5) and 12 = 2 (mod
5) and so on.

The real interest comes from the fact that if
we let "a" stand for any number congruent to 12
modulo 5 and "b" represent any number congruent to
9 modulo 5 we find that (i) a + b = g1 = 12 + 9
fmod 5) (1) & - B = 3 = 12-9 (mod 5) (1il)
a.p = 108 = 12,9 (mod 5). We can of course prove
this by showing that as 12 = 5m + a and @ = 5n + b,
12 + 9 = 5(m + n) + a+ b a + b (mod 5),
12 = @ = 5{m -~ ) + & — b a -b (mod 5) and
12.9 = 5(mn + an + bm) + a.b = a.b (mod 5). In
other words, the operations of addition,
subtraction and multiplication commute wilth the
operation of "taking remainders"; it doesn't matter
which we do first. So we can do three arithmetic
processes using the congruence sign (modulo the
same integer of course) instead of the equals sign.

LLet us now cut out some alternatives by taking
our "a"'s and "b"'s from only the numbers 0, 1, 2,
3, U or, more generally, where we are taking
congruences modulo m we will allow only the values
B e B e |y Bl TOE "a® and "b". We will call
these values "least residues'"; should we want to
revert to our earlier viewpoint and talk of any
remainder, we will use the term residues. Thus
17, Fs 2 and 12 itself are 211 residues, modulo 5,
but 2 is the least residue. We thus have a new
sort of arithmetic using only the least residues



0, 1, ... , m-1 with the knowledge that if we get
the result a = b (mod m) then a actually equals b,
is b; for we can never get 2 = 7 (mod 5) as a
result of our calculatiors, as T is not a least
residue. As will be known, we can draw up addition
and multiplication tables, modulo 5, using only
least residues,

Addition: + p 1 2 3 4
g | ¢ 1L 2 3 9
L 11 2 3 & B
> 2 3 mog
3t 3 B g 1 2
BlE e 2 2 3
Multiplieation: x | 0 1 2 3 4
O 10 O G O 0
L le 1 2 3 &
s iy 2 B 1 3
2 le 2 1 4 2
bl o B 35 2 1
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It is comforting to note that (iv) a + 0
g (mod 5) {(v) 2.0 = 0 (mod 5) angd {(vi) sa.l
a (mod 5).

Because, in "ordinary" arithmetic we deduce
from the statement f + g = h that £ = h - g, we can
do the same for congruences, modulo m, and thus
obtain from 3 + 4 = 2 (mod 5) that 3 = 2 - 4 (mod
5)., Looking at the addition table, modulo 5, we
see that no number appears more than once in any
row or column; indeed, each least residue appears
exactly once in each case., It follows that we
always get exactly one solution for x in eachd
the equations (vil) a 4+ x 2 ¢ (mod 5) (viii)

X +b=zc (mod 5) (ix) a + b = x (mod 5).
Consequently the same statement will be true for



the equations (xii) a = ¢ - x (mod 5) (xi111)

£ Z ¢ -b (mod 5) (xiv) a = x - b (mod 5). Thus
(xiii) guarantees that we may do subtraction of
least residues, modulo 5, and always get a precise
answer. 1 leave you to prove that all this will be
true for any positive integer m instead of 5; you
will need to show mainly, that each least residue
appears exactly once in each row and column of the
addition table.

You will notice that we had 2 - 4 = 3 (mod 5);
should we not have written 2 - U4 = -2 (mod 5)?
Certainly -2 1s a residue, but it 1s not a least
residue, so that we choose 3 which is. Lt is,
however, instructive to remember that a property of
"ordinary" negative integers such as -8 is that
(-8) + (8) = 0; it follows from this that m - 1 =
-1 (mod m), m - 2 = -2 (mod m) and so on because
(m - a) + a =0 (mod m). For congruences, then, we
have no need to invent negative integers to ensure
that equations (vii) to (xiv) always have a
solution. On the other hand, we do lose something
we have in ordinary arithmetic, because there we
could state that (xv) a > b if and only if a - b
is positive (xvi) a = b if and only if a - b = 0
(xvii) a < b if and only if a - b is negative.

For congruences we can only use (xvi) because our
least residues are both positive and negative;
talking about least residues being greater or less
than one another is meaningless.

We have yet to look at the fourth operation
of arithmetic: division. Just as subtraction is
invented from addition, or 1s the operation
inverse to addition which restores the status quo,
so is division invented from multiplication 1.e.
from 96 = 12.8 we get 9612 = 8 or 968 = 12,
Seeking to apply this to congruences, modulo m, our
first requirement must be, as in (vii), (viii) and
(ix) with subtraction, that there shall always be
one, but ‘no more than one, solution to every



eqigtion (xviil) =.x = e (mod m} (xix) =x.b = ¢
(mod m) (xx) 4&a.b E x (mod m).,

Let us look at the multiplicafion table for
congruences modulo 6.

Multiplication:

N O Ol X
o o O O © 9o
B N OO 5 N O
v = O N = OOE
oD w4 U OfjWUt

Ul = N BP9
w O w o w Olw

L0 5 [ o 6

Clearly this does not match up to our
requirements: 2.1 = 2 {mod 6) and 2.4 = 2 (mod 6);
yet we do get unique solutions for (xviii), (xix),
(xx) when we work modulo 5, provided neither a nor
b is zero in (xviii) and {(xix) as can be verified
from the multiplication table modulo 5. Why this
difference? Why are there two or more solutions
for a.x = b (mod m) for some values of m? Well, we
know that a.x = b (mod m) if and only if ax - b 1s
divisible by m. Consider a =2, b = 2, m = 6 again.
We wlll have to flpd X so that 2(x -~ 1} is divisible
by 6 in ordinary arithmetic. But this willl be so
if x — 1 is divisible by 3 and this certainly
happens if x = 1, as 3x0 = 0, and also if x = 4 as
3x1 = 3, It is also true for an infinite number of
other integers too, but remember that we want x to
be a least residue, to have a value between 0 and 5.
The "more than one solution" result, x = 1 or 4,
arose hecause 2 was a factor of a, b and m. Now we
can see that, whenever m has two factors each
different from 1, this situation will arise for some
5 and b, Tus, m=r.s, r#1l, s #1, m#¥ 0, will
always yileld at least the two solutions x = 1,

x =8 + 1 as solutions te rx = r {mod m). The only
times this sort of situation cannot arise 1s when
m is a prime number p because we can then only have
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P = p, @ =1 or viee versa. " So (xviil), (xix}, (xx)
are uniquely solvable modulo a prime when a Z 0

(mod p) In (xviil} and b / 0 (mod p) in (xix). 'This
means that x £ eta (mod p) and x = c%b (mod p)
always have exactly one answer, from (xviii) and
(xix). Incidentally, (xx) just shows that
multiplication modulo any m always ylelds a precise
answer.

We are now in the position where we know that
the arithmetic of least residues, modulo a prime p,
behaves just like our ordinary arithmetic of
positive, negative and zero fractions (i.e. rational
numbers); we can divide any one by any other except
that we are forbidden to divide by zero. (Can you
see why this 1s logically necessary?) Once we
introduce division, our least resldues are no leonger
like ordinary integers, because, for instance, you
can't divide 3 by 2 and get an integer answer. One
might be tempted to think that least reslidues modulo
a non-prime number like & might behave like integers
in ordinary arithmetic with respect to the four
rules of arithmetic, but of course they don't,
because in ordinary arithmetic we get one or no
answer to the problem c+a = X whereas, modulo 6, we
get two answers sometimes, and sometimes none.

If least residues, modulo a prime, behave
like rational numbers, can we write them in the same
way as rational numbers if we want? Let's look at

ordinary arithmetic. %-= 2.3_1 where 370 is the

<l

&)
solution to 1+3 = x. We might try the same
definition for % modulo 5. % = 2.3_1 (mod 5) where
3—1 i1s the solution to 133 = x (mod 5). OFf course,
we don't mean "two-thirds" in the usual sense here,

and of course 1+3 = 2 {(mod 5) so that we obtain

% = 2.3—1 = 2,2 £ 4 (mod 5). Similarly, we get % =
4 (mod 5), % = 4 (mod 5) etc. t would be



intriguing to see 1f we can add, subtract, multiply
and divide our new "fractions" in the same way as
ordlinary  fractions.

y ad + bec

In ordinary arithmetic, % + % 53 (b # 0,
d # 0). Why? Because . a.b_l + c.d—l =

1 ol Mgecs 8 p 1
ad.d b + e.bb ~d (ad + be)b ~d Clearly

the same rule will hold for congruences. Thus:

% + 3= T L o R e I

= 1

(3 + W), 08, 3% " = 2,070 = 2,8 2 1 (wod 5). (e
could have left it as = 2°u3+u3'3.) Checking, we
have % = 4 (mod 5), % 2 2 (mod 5) and 4 + 2 = 1

(mod 5). Subtraction must work in the same way
For multiplication ordinary arlthmetlc goes b E

(a.b” )(c d l) (a.c)(b. d) = %% while modulo 5
S f =23t at = 2T (2 ) = 2T s
5.3 = 1 (mod 5). A check ylelds % = (mod 5), r

= 4 (mod 5) and 4,4 = 1 (mod 5). Finally division
in ordinary arithmetic, "invert and multiply”,

follows from 2:% = (a.b_l) (c.d_l) = (ab_l).(cd

b d
.b_l).( =l d) = (ad)(b—lc_l) - 84 wogulo 05 4
(2. s Ity = o gt

)
Tl ca W IR TE
(2.1)(3.3)7F = (3™ = 3.4
Checking, % 4 (mod 5), % = s B%2
M.2'l = 0.3 2 (mod 5). Can you prove that we
could rightly have said 4:2 = 2 (mod 5) "by
ordinary arithmetic"? Finally, can you prove that

the cancellation law holds for our "fractions"
modulo 5 just as it does with ordinary fractions?

ot N |
y

Hi

= (&
2.3
30

j E —f— (mod 5) or

1

no
~
=
O
Q,
Ul
"
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Follow-up problems:

N.B.: p always represents a prime number; all
letters that appear represent least residues.

-
—bi/ga—Uac s i)
will give the solutions to the congruence

ax2 + bx + ¢ = 0 (mod p), where such solutions

exist.

1. Prove that the formula X =

5. Show that the solutions of 3x2 + 2x + U4 2 0

(mod 5) are also solutions of x2 + Ux + 3 20
(mod 5).
3.  Show that the solutions of 2% + bx + ¢ £ 0

(mod p) must also satisfy a congruence of the form

x2 + dx + e = 0 (mod p).

i, (Hard) How many least residues, modulo p, are
perfect squares modulo p? (Try it out with p = 5,
p = 7 first,)

D For which prime numbers less than 14 does the

congruence x2 = -1 (mod p) have a solution? Can
you suggest a general rule for all prime numbers
and not just those less than 149

M. Greening.

THE QUARTZ TRACK

A man runs n times around a circular track of
radius s miles and drinks t pints of some liquid
(which will remain nameless) every miles. He only
drinks one quart. Explain, (Hint: It 1s not
because he gets giddy or drunk.) Answer page 36.
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