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THE 72 RULE AND OTHER APPROXIMATE RULES OF
COMPOUND INTEREST

Will Smith1

Introduction

There is a simple approximate rule of thumb used by investors and accountants to
estimate the time taken in years, n, for an investment to double with an interest rate
of R%, or indeed for a debt to double if left unpaid. One simply divides 72 by R to
estimate the time in years. For example an interest rate of 8% p.a. gives a doubling
time of about 72/8 = 9 years. Alternatively we might ask what interest rate will cause
a doubling in 10 years: answer 72/10 = 7.2%. We will see that these are very good
approximations, but the rule doesn’t work quite so well for interest rates very different
from 8 or 9%. The rule is known as “Rule 72” or “the 72 Rule” and is often attributed to
the investment advisor Henri Aram [1] who popularized it. A few years ago I spoke to
Mr Aram after a lunchtime lecture he gave at the Sydney Stock Exchange and he told
me he had first heard of it from an aged American investor while on an ocean cruise.
The rule may also be found as an exercise in a respected textbook on mathematical
investment analysis [2]. A practical virtue of the rule is the large number (10) of factors
of 72, simplifying mental calculations. In subsequent sections reasons for the success
of this and other similar rules are discussed.

Of course the time may be measured in periods other than years provided the inter-
est rate is that for the corresponding period. In fact since the introduction of comput-
ers, lending authorities have tended to use shorter periods (eg. monthly) for reckoning
accrued interest. In this context there is another approximation that is intrinsically in-
teresting and sometimes convenient in calculations for long-term loans like mortgages
from a bank.

Of course most pocket calculators nowadays will calculate compound interest with-
out the need for approximations but simple rules give better intuitive information
about the effects of long-term compound interest.

The 72 Rule

To derive the 72 rule we make use of a known series for the natural logarithm, lnx
or loge x based on the limiting sum of the geometric series

1− x+ x2 − x3 + · · · = 1

1 + x
(−1 < x < 1).
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Integrating, ln(1 + x) = x− x2

2
+

x3

3
− x4

5
+ · · ·

for −1 < x ≤ 1. For small values of x it is convenient to write,

ln(1 + x) = x− x2

2
+O(x3)

where O(x3) means terms in x3 and higher, and that the approximation

ln(1 + x) = x− x2

2

has an error of terms in x3.
Now consider the investment of one dollar with compound interest R% payable

yearly. After n years it will become (1 + R
100

)n dollars or (1 + r)n where r = R
100

is the
fractional interest rate.

For this to represent a doubling in value we must have(
1 +

R

100

)n

≡ (1 + r)n = 2. (1)

Now take natural logarithms giving

n ln(1 + r) = ln 2.

Then,

n =
ln 2

ln(1 + r)

=
ln 2

(r − 1
2
(r)2 +O((r)3))

, substituting for ln(1 + r)

=
ln 2

r(1− 1
2
(r) +O((r)2))

=
ln 2

r
(1 +

1

2
(r) +O((r)2)) by long division for example

≈ ln 2

r

(
1 +

r

2

)
neglecting the higher order terms.

The main term on the right ln 2
r

determines how n behaves for arbitrarily small interest
rates. For practical interest rates, we might modify this

ln 2

r
to

ln 2

r

(
1 +

r

2

)
for some typical interest rate, and then we use the simpler approximation

n =
K

R
=

K

100r

with K = 100 ln 2
(
1 +

r

2

)
= 100 ln 2

(
1 +

R

200

)
.
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Taking R = 7% to evaluate K gives K = 71.74, or R = 8% gives K = 72.09.
So for interest around 7 or 8%, K = 72 is pretty close. This is a justification for the 72
rule

n =
72

R
or R =

72

n
.

Alternatively we could treat it purely empirically by trying to find a functional form
that represents the exact formula by some convenient numerical approximation. This
might be regarded as an example of approximation, a branch of both mathematics
and numerical computation. The theoretical development above suggests the type of
approximation likely to be useful.

A more accurate approximation could be obtained from

n =
100 ln 2

R

(
1 +

R

200

)
=

100 ln 2

R
+

1

2
ln 2

n− 1

2
ln 2 =

100 ln 2

R
or R =

100 ln 2

n− 1
2
ln 2

or numerically

n− 0.3466 =
69.31

R
or R =

69.31

n− 0.3466
.

Although this is a good approximation we probably wouldn’t choose to use it because
it is hardly easier to use than the precise equations,

n =
ln 2

ln(1 + R
100

)

or solving for R

1 +
R

100
= 21/n

R = 100(21/n − 1).

Numerical comparisons are given in Table 1 where the calculated interest rates for
doubling over given periods are listed.

n R
Doubling time Interest Rates %

Years 72 Rule Exact Rule Alternative rule
(3 dec) (3 dec)

72 1 0.967 0.967
36 2 1.944 1.944
18 4 3.926 3.926
12 6 5.946 5.948
10 7.2 7.177 7.180
9 8 8.006 8.010
8 9 9.051 9.057
6 12 12.246 12.261
4 18 18.921 18.973
2 36 41.421 41.921
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Table 1
Years and Interest rates for doubling

We see that the 72 rule gives fairly good results over a range of interest rates. The
alternative rule gives better results over a bigger range but the price is a more compli-
cated formula.

Table 1 gives the interest rate for doubling over a whole number of years. If the
rules are used to find the number of years for a given interest rate the result might not
be a whole number of years. For example the 72 rule at 10% p.a. gives 7.2 years. The
original formula estimates the interest on the fractional part k (0 < k < 1) of a year as

(1 +
R

100
)k,

whereas a financial institution would usually reckon instead with(
1 +

kR

100

)
.

This is another inherent approximation, not usually serious. In the example above with
k = 0.2

(1 +
R

100
)k = 1.10.2 = 1.0192

and 1 +
kR

100
= 1.0200.

Rules for other than doubling and their interrelationship

We have seen that the 72 rule represents doubling fairly accurately. Obviously if
we estimate the time from the 72 rule and add that time again the original sum will
quadruple, so we would have an 144 rule for quadrupling, i.e. 144

R
gives the number of

years to quadruple. Other constants than 144 or 72 will correspond to other multiples.
Now let’s denote by n(d) the number of years under compound interest with rate

R% that leads to a multiplication by d. (n(2) would be the n of the previous sections).
We have instead of equation (1)(

1 +
R

100

)n(d)

= d

from which
n(d) =

ln d

ln
(
1 + R

100

)
and following the previous approximation method for the 72 rule,

n(d) ≈ 100 ln d

R

(
1 +

R

200

)
.
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so

n(d) ≈ 100 ln 2

R

(
1 +

R

100

)
×
(
ln d

ln 2

)
≈ 72

R
×

(
ln d

ln 2

)
using the approximation that gave the 72 rule.

We now write the rule as
n(d) =

K(d)

R

where K(d) = K(2) = 72 for the doubling rule d = 2. Then,

K(d) =

(
72

ln 2

)
ln d.

For two values d = a and d = b we see that

K(ab) = K(a) +K(b)

because
ln ab = ln a+ ln b.

However, this relationship also follows from a direct application of the definitions of
n(a) and n(b), since a time n(a) multiplies the sum by “a” and a time n(b) multiplies
the sum by “b” so that time (n(a) + n(b)) multiplies by ab and,

n(ab) = n(a) + n(b)

irrespective of the approximation. Again,

n(a) = n
(a
b

)
+ n(b)

or n
(a
b

)
= n(a)− n(b).

Multiple d Constant K(d)
1.5 42
2 72
3 114
4 (= 22) 144
5 167
6 (= 2.3) 186
7 202
8 (= 23) 216
9 (= 32) 228
10 (= 2.5) 239 ≈ 240
11 249
12 (= 22.3) 258
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Table 2
Rules for some other Multiples

Table 2 gives a whole range of rules from which many more can be devised by multi-
plication and division. The K(d) values are integer approximations consistent with

n(ab) = n(a) + n(b).

In some cases the error committed in using a near integer having more factors may be
quite small and lead to easy mental calculations. For example K(10) ≈ 240 suggesting
that at 8% compound interest 30 years would lead to a multiplication by about 10
(Note: (1 + 8

100
)30 ≈ 10.06).

Suppose a retiree wants to estimate the effect (i.e., the value of d) of 5% inflation for
20 years using the given table.

Now,

n(d)×R = K(d)

so that K(d) = 100 with R = 5 and n(d) = 20.

However, K(d) = 100 is not in our table, so look for two values of K which differ by
100:
We have,

K(8)−K(3) = 102 ≈ 100

i.e. K

(
8

3

)
= 102 ≈ 100

∴ d ≈ 8

3
= 2.67.

and so the retiree’s cost of living will have risen by a factor of 2.67 (i.e. all prices will
have risen by 2.67).

This is perhaps a somewhat forced (but nevertheless valid) use of Table 2.
The actual value of d is simply

(1 +
5

100
)20 ≈ 2.65.
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