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THE CIRCLE DIVIDERS

Peter Brown1

Fairly early in your study of algebra, you meet one of the most useful of algebraic
techniques, the difference of two squares which enables you towrite, for example x2−1 =
(x− 1)(x+1). Somewhat later you come across the so called sum and difference of two
cubes so you can write x3 + 1 = (x+ 1)(x2 − x+ 1) and x3 − 1 = (x− 1)(x2 + x+ 1).
The polynomials x − 1, x + 1, x2 + x + 1, x2 − x + 1 are examples of what are known
as cyclotomic polynomials or circle dividing polynomials (from the Greek κύκλoς- a circle
and τ ǫ́µνω - I cut.) The cyclotomic polynomials arise from factoring the polynomial
xn−1, where n is a positive integer. I will give the exact definition of what we mean by
a cyclotomic polynomial a bit later, but the name arises from the fact that if we solve
xn − 1 using complex numbers, then all the solutions lie on a circle of radius 1 and are
equally spaced on that circle, so they cut the circle up into n equal pieces.

Cyclotomic polynomials havemany interesting properties and are a favourite source
of questions for the ‘harder 3-unit’ section of the Four Unit HSC exam.

For example, suppose now we look at the equation x5 − 1 = 0. Clearly the only real
root is x = 1, but in the complex plane there are 5 distinct solutions, given by
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5
+ i sin 2π

5
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5
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5
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5
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I dislike the notation cis θ and so I will define

eiθ = cos θ + i sin θ.

(It can be shown that this at least makes sense, since [cis(θ)]n =cis(nθ), but one usually
takes this as the definition of eiθ.)

We can then write the roots as e±i 2π
5 , e±i 4π

5 , 1 and plot these in the complex plane:
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Now we can in fact factor the polynomial as

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

and so if we discard the real root, we find that the four complex numbers are the roots
of x4 + x3 + x2 + x + 1 = 0. Does this polynomial factor over the rationals? Well, the
answer is no, and I will show you why later on, but over the real numbers it certainly
does factor. There are a number of ways to do this but I will do it as follows. Call
the four complex roots, α, β, α, β (notice that the complex roots occur in pairs, i.e. if
α = a+ ib is a root then so is α = a− ib) then we have

(x4 + x3 + x2 + x+ 1) = (x− α)(x− α)(x− β)(x− β).

Now if we expand the brackets in pairs, using the facts that α+α = a+ ib+ a− ib = 2a
and αα = (a+ ib)(a− ib) = a2 + b2 = |α|2 = 1, we have

(x4 + x3 + x2 + x+ 1) = (x2 − 2x cos
2π

5
+ 1)(x2 − 2x cos

4π

5
+ 1) (1)

which gives the factorisation over the real numbers.
Moreover, we can use (1) to find an explicit formula for cos 2π

5
as follows. Divide the

polynomial equation x4 + x3 + x2 + x + 1 = 0 by x2 to get x2 + x + 1 + 1
x
+ 1

x2 = 0.
Now complete the square, and we get

(

x+
1

x

)2

+

(

x+
1

x

)

− 1 = 0.

If we let y = x+ 1
x
, then we get the quadratic y2 + y − 1 = 0 which has roots −1±

√
5

2
.

Now since the modulus of x is 1, 1
x
= x and so x + 1

x
= 2 cos 2π

5
or 2 cos 4π

5
. Thus

we can equate the real terms to obtain

cos
2π

5
=

−1 +
√
5

4
and cos

4π

5
=

−1−
√
5

4
.

As part of this problem, we had to factorise x4 + x3 + x2 + x + 1 over the reals, and
we could see from the answer, that this polynomial could not be factored over the ra-
tionals. Thus when we think about factoring a polynomial we have to state where the
roots (and hence the co-efficients in the factors) are allowed to come from. If we al-
low complex numbers then every polynomial factors into a product of linear factors
(at least in theory, although this is very difficult to do in practice). If we only allow real
numbers then every polynomial with integer co-efficients factors as a product of linear
and/or quadratic factors. These two cases are then, in a sense, not very interesting
algebraically. If we only allow rational numbers then the problem is much more inter-
esting. For example the polynomial x4+1 factors as (x−eiπ/4)(x−e−iπ/4)(x−e3iπ/4)(x−
e−3iπ/4) if we allow complex numbers; it factors as (x2−

√
2x+1)(x2+

√
2x+1) if we

allow real numbers and it cannot be factored at all if we only allow rational numbers.
We will say that a polynomial which cannot be factored over the rational numbers is
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irreducible. On the other hand, the polynomial x4 + 4 is reducible over the rationals
since it factors as (x2 − 2x+ 2)(x2 + 2x+ 2) using only rational numbers.
We now return to the cyclotomic polynomials. These arise when we try to factor xn−1,
so we need to spend a little time looking at the factorisation of such polynomials. For
example x5−1 factors, as we have seen, as (x−1)(x4+x3+x2+x+1)while x6−1 factors
as (x− 1)(x+ 1)(x2 − x+ 1)(x2 + x+ 1) over the rationals. You can easily check (by ex-
panding) that xn−1 always has a factorisation (x−1)(xn−1+xn−2+...+x+1). So when
factoring such a polynomial we really are interested in whether xn−1+xn−2+ ...+x+1
can be factored or not.

A little experimentation suggests that if n is prime then xn−1 + xn−2 + ... + x + 1
is irreducible over the rationals. To prove this result we need the following test.

Eisenstein’s Test: Suppose f(x) = anx
n + an−1x

n−1 + ...+ a0, where the co-efficients ai
are all integers. If there is a prime p such that p does not divide an, but p does divide all
the other co-efficients, and p2 does not divide a0, then f(x) is irreducible over the set Q
of rationals.

Proof: Suppose we have

anx
n + an−1x

n−1 + ...+ a0 = (bkx
k + bk−1x

k−1 + ...+ b0)× (clx
l + cl−1x

l−1 + ...+ c0),

where the bi’s and ci’s are all integers. You will recall that if a prime p divides the
product ab of two integers then it must divide either a or b (or both). (This of course is
not true in general of a composite number, for example 6 is a factor of 12, but not of the
numbers 3 and 4 whose product is 12.) We use the symbol | to mean ‘is a factor of’. So
6 | 12 means 6 is a factor of 12.

Now p | a0 = b0c0 and so p | b0 or p | c0. But the condition p2 6 |a0 means that
p cannot divide both. Without loss of generality, suppose p 6 |c0 (and so p | b0). Then
p | a1 = b1c0+b0c1 and so p | b1. Also p | a2 = b2c0+b1c1+b0c2 and so p | b2. Continuing
thus, we have p | bk for all bk: but then p | an contrary to our assumption.
Example: f(x) = x7 + 2x3 + 4x+ 6 is irreducible over Q by Eisenstein with p = 2.

Also f(x) = xn + a (where a is not a square) is irreducible over the rationals.

Example: f(x) = 1 + x+ x2 + x3 + x4.

It does not appear that Eisenstein is applicable here, but, clearly f(x) is irreducible if
and only if f(x + 1) is irreducible, and f(x + 1) = x4 + 5x3 + 10x2 + 10x + 5 which is
irreducible by Eisenstein with p = 5. Thus f(x) is irreducible over Q.

In fact if p is a prime then the polynomial xp−1 + xp−2 + ... + x2 + x + 1 is always
irreducible over the rationals. It is an example of a cyclotomic polynomial.

To see this, recall that we can write p(x) as xp−1
x−1

and also that p(x) can be factorised
if and only if p(x+ 1) can be.

Now p(x+ 1) = (x+1)p−1
x

and so we have

p(x+ 1) = xp−1 +

(

p

1

)

xp−2 +

(

p

2

)

xp−3 + ...+

(

p

p− k

)

xp−k−1 + ....+ p.
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Now the general co-efficient can be written as p (p−1)!
k!(p−k)!

with 1 ≤ j ≤ p − 1 and so this

number is divisible by p since p is prime.
Thus all the non-leading co-efficients are divisible by p but p2 does not divide the con-
stant term p and so the polynomial is irreducible by Eisenstein’s test.

We can now finally give a definition of what we mean by a cyclotomic polynomial.
We will define the cyclotomic polynomials to be the polynomials Φn(x) which we cal-
culate as follows. Firstly, we take Φ1(x) = x− 1 and then

Φn(x) =
xn − 1

∏

d|n,d 6=n Φd(x)

for n > 1. This formula looks horrendous, so let me explain what it means. The
notation

∏

means we take a product of the cyclotomic polynomials Φd(x), where d is a
factor of n excluding n itself. So to compute Φ2(x) we take x2 − 1 and divide by Φ1(x)
to obtain x+ 1. Similarly, Φ3(x) = x2 + x+ 1 and

Φ4(x) =
x4 − 1

Φ1(x)Φ2(x)
= x2 + 1.

Φ5(x) = x4 + x3 + x2 + x+ 1 (since 5 is prime) and

Φ6(x) =
x6 − 1

Φ1(x)Φ2(x)Φ3(x)
= x2 − x+ 1 etc.

We have seen that if p is prime, then Φp(x) = xp−1 + xp−2 + ...+ x+ 1.
It is not obvious that the definition of Φn(x)will in fact produce a polynomial, since

how do we know that all the factors in the denominator will divide the numerator
xn − 1? I will not go through the proof of it here since it is slightly harder.
Here is a list of the next few cyclotomic polynomials

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1
Φ8(x) = x4 + 1
Φ9(x) = x6 + x3 + 1
Φ10(x) = x4 − x3 + x2 − x+ 1
Φ11(x) = x10 + x9 + ...+ x+ 1
Φ12(x) = x4 − x2 + 1
Φ13(x) = x12 + x11 + ...+ x+ 1
Φ14(x) = x6 − x5 + x4 − x3 + x2 − x+ 1
Φ15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1
Φ16(x) = x8 + 1
Φ17(x) = x16 + x15 + ...+ x+ 1
Φ18(x) = x6 − x3 + 1
Φ19(x) = x18 + x17 + ...+ x+ 1
Φ20(x) = x8 − x6 + x4 − x2 + 1
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If you compute the first hundred cyclotomic polynomials you will find that all the
co-efficients are 0, 1 or −1. For example, the fiftieth cyclotomic polynomial is

Φ50(x) = x20 − x15 + x10 − x5 + 1.

This phenomenon is however a nice example of the ‘lore of small numbers’, in other
words, a happy accident that depends only on the fact that n is ‘small’. If we look at
the 105th cyclotomic polynomial

Φ105(x) = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + x36 + x35 + x34 + x33

+ x32 + x31 − x28 − x26 − x24 − x22 − x20 + x17 + x16 + x15 + x14 + x13

+ x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x+ 1,

we see that it contains terms whose co-efficients are−2. Furthermore, it was shown (in
about 1931) that the co-efficients in any cyclotomic polynomial can be as large as we
please, provided we take n large enough.

Here are some problems for you to think about.
(1) Can you find a way to predict the degree of a cyclotomic polynomial?
(2) Can you show that if n is odd, then Φ2n(x) = Φn(−x)?

As well as being fun to play with, cyclotomic polynomials are an important theoretical
tool in modern abstract algebra. More recently they have been used in developing al-
gorithms to factorise very large numbers and so they have a very important practical
use as well.
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