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THE MATHEMATICIAN ON THE BANKNOTE: CARL

FRIEDRICHGAUSS

Frank Reid1

PART TWO

In the previous issue of Parabola I discussed the derivation of the normal distri-
bution of measurement errors by the famous German mathematician Carl Friedrich
Gauss in 1809. Gauss and the Normal Curve were featured on the front side a German
banknote several years ago.

The reverse side of the banknote gives us a glimpse of a lesser known side of Gauss’
genius – his talent as an inventor and his practical skill as a surveyor. Illustrated on the
note is a heliotrope, an instrument that Gauss invented to help in his surveying, and
we are shown a section of the triangular grid Gauss drew over the north of Germany
as a result of the survey. What was the famous mathematician doing out in the field
surveying for five years?

Gauss’ interest in surveying and geodesy (the study of the shape of the Earth) went
back to his youth, and he published his first paper in geodesy in 1799, when he was
twenty two. He carried out his own triangulation measurements from 1803 to 1805,
andworked with the Frenchmilitary in their survey of the German town of Brunswick,

1Frank Reid is a mathematics Teacher in St. Ursula’s College, Kingsgrove.
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where he had been born. In 1816 his good friend Heinrich Schumacher, who was Pro-
fessor of Astronomy in Copenhagen, began a survey of Denmark. It was decided to
continue the Danish survey to include the neighbouring German kingdom of Hanover.
It is interesting to note that at this time the region belonged to the United Kingdom of
Great Britain, Ireland and Hanover, and it was King George III who commissioned
Gauss to carry out the survey.

The usual way to determine the area of a piece of land is to lay a grid of trian-
gles over the land with some sort of markers, and measure some sides (which may be
kilometres in length) and angles. Then, using the Sine Rule and the Area result (Area
= 1

2
ab sin C) from Trigonometry the areas of the triangles can be calculated, and then

summed. This technique is called triangulation. Obviously, it is important that the
sides and angles are measured accurately.

Part of the triangulation of northern Germany as surveyed by Gauss,
and reproduced on the reverse side of the banknote.

Gauss invented the heliotrope in order to be able to sight one point of the land from
another point. The principle of the heliotrope is the same as that used by a child when
he or she reflects sunlight onto distant objects with a mirror. Indeed, Gauss conceived
the idea when he saw the sun reflected by a windowpane of a distant building. The he-
liotrope links two small vertically superimposed mirrors with a telescope. The mirrors
reflect the sunlight to a chosen point several kilometres away, and with the telescope
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the point struck by the reflected sunlight can be easily seen, appearing like a bright
shining star. As the sun moves across the sky, the mirrors can be manoeuvred by hand
to rotate so that the sunlight is always reflected in the same direction. The light from
the heliotrope was also used as an optical telegraph to transmit messages across vast
distances.

Gauss even thought of the idea of using the heliotrope to send a light signal to the
moon, in order to gain data to determine longitude accurately. He wrote, “With one
hundred banked mirrors, each sixteen square feet [1.5 square metres], one would be
able to send a fine heliotrope light to the moon”. In effect, one could communicate
with someone on the moon!

With the aid of the heliotrope Gauss was able to measure distances much longer
than could be done before, and also to greater accuracy. On a bright and clear day a 15-
centimetre heliotrope can be seen at 50 kilometres. With some minor improvements,
the heliotrope became a very efficient instrument, andGauss could use it without direct
sunlight on days which were overcast. It was eventually superseded by improved
models from 1840, and by aerial surveying in the twentieth century.

During all the fieldwork in the survey from 1821 to 1825 Gauss and his team con-
tended with many difficulties. Transport was poor, the weather was often bad, liv-
ing conditions were uncomfortable, and there was inadequate assistance and financial
support. Often more than a dozen trees had to be cut down, and signal towers had
to be erected in difficult places. In the evenings Gauss assessed all the data himself.
His principal tool dealing with this mass of data was the method of least squares (dis-
cussed later) which he had developed. The whole experience took toll of Gauss’ health,
and he was involved in an accident when his carriage overturned in 1825. Though he
no longer took part in the fieldwork after 1825, the surveying of Hanover continued
through to 1844, with Gauss still directing the survey and making the calculations. He
estimated that he had processed more than one million figures. We can be sure he
would have loved to have had a modern computer.

Out of all this practical work Gauss produced some major theoretical works. In
1823 he developed his ideas on the method of least squares, and in 1828 he published
his conclusions on the shape of the earth, on instrumental errors, and the calculus of
observations. In 1843 and 1846 he published two papers with the title “Investigations
into Subjects of Higher Geodesy”. All of these works had enormous influence on the
development of theoretical and practical geodesy.

In a major new direction of mathematical research he published, also in 1828, his
masterful book on differential geometry, “General Investigations into Curved Sur-
faces”. Here he discussed the problem of reproducing a curved surface on a plane
or sphere, and the extended problem of representing one curved surface on any other
curved surface.

Although he had some sadness in his family life, Gauss lived a full life and was
honoured and respected by everyone. He died in 1855.
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I wonder if one day an Australian mathematician will become so famous that he or
she will be featured on an Australian banknote? Let’s hope so.

The method of least squares

Gauss had investigated the method of least squares as early as 1794, but unfortu-
nately he did not publish the method until 1809. In the meantime, the method was
discovered and published in 1806 by the French mathematician Adrien-Marie Legen-
dre, who quarrelled with Gauss about who had discovered the method first. The basic
idea of the method of least squares is easy to understand.

It may seem unusual that when several people measure the same quantity, they
usually do not obtain the same results. In fact, if one person measures the same quan-
tity several times, the results will vary. What then is the best estimate for the true
measurement?

The method of least squares gives a way to find the best estimate, assuming that the
errors (i.e. the differences from the true value) are random. Let us consider a simple
example. Suppose we measure a distance four times, and obtain the following results:

72m, 69m, 70m and 73m.

Let us denote the estimate of the true measurement by x, and form the deviations
from x, namely

x − 72, x − 69, x − 70, and x − 73.

Let S be the sum of the squares of these deviations, i.e.

S = (x − 72)2 + (x − 69)2 + (x − 70)2 + (x − 73)2.

We seek the value of x that minimises the value of S.

The reader can show that S = 4(x − 71)2 + 10. Hence, it can be seen that the
minimum value of S is 10, when x = 71. (Those readers familiar with calculus may use
the derivative of S to show that S has a stationary value when x = 71).

So 71m is the best estimate of the true measurement. Note that 71m is the mean or
average of the original four measurements. It is always true that for n measurements
the minimum value of S occurs when x equals the mean of the n measurements. Can
you prove this?

The line of best fit

In some courses at school, students are taught to estimate the line of best fit for
a set of ordered pairs. The method of least squares calculates the line of best fit, by
minimising the sum of the squares of the vertical distances of the points to the line.

Consider the measurements of two quantities x and y. For example:

x1 = 2, x2 = 4, x3 = 6, x4 = 8, x5 = 10, and x6 = 12.
y1 = 2, y2 = 4, y3 = 4, y4 = 5, y5 = 5, and y6 = 6.
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The true values of (x
n
, y

n
) lie on a line y = Ax + B, but due to random errors in the

measurements our ordered pairs do not lie on a straight line. Let us call the deviations
v

n
, where v

n
= Ax

n
+ B − y

n
, for n = 1, 2, . . . , 6.

Again we form S, the sum of the squares of the deviations, and then minimise it.

S = v2

1
+ v2

2
+ v2

3
+ · · · v2

6

= (2A + B − 2)2 + (4A + B − 4)2 + (6A + B − 4)2 + · · ·+ (10A + B − 5)2.

We now find the partial derivative of S with respect to A. This means that we differen-
tiate S with respect to A, and treat B as if it was a constant. As with one variable, we
set the derivative equal to zero.

This gives
182A + 21B = 103 (0.1)

We also find the partial derivative of S with respect to B, differentiating S with respect
to B, and treat A as if it was a constant, and set the derivative equal to zero.

This gives
21A + 3B = 13. (0.2)

Solving (0.1) and (0.2) we have A = 12

35
and B = 29

15
.

Hence the line of best fit is y = (12

35
)x + (29

15
).
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The method of least squares assumes that the errors in measurements are random
and unbiased, and are distributed normally. Thus we can see a connection between the
front side and the reverse side of the banknote!
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