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THE 72 RULE AND OTHER APPROXIMATE RULES OF

COMPOUND INTEREST

Will Smith1

PART 2

Mortgage Loan Repayments and the Exponential Function

When people buy a home they usually have to borrow an appreciable fraction of its
value from a bank or other financial institution. The bank provides the money secured
by a mortgage (a legal document given by the bank for redress in the case of default by
the borrower). The borrower agrees to repay the loan by constant instalments (usually
monthly) over the term of the loan (often as long as 25 years). During the currency of
the loan the bank changes interest on the amount unpaid at the time. The repayment
instalment is adjusted so that the debt is discharged at the end of the agreed period.
First let’s find how to calculate the repayments required. You might already know

how to do this. There are several ways but the one below is straightforward. Suppose
$A is the original debt, $P the payment made at the end of each of N periods (initially
thought of as years) over which the loan is exactly repaid in full. Let the interest rate
on unpaid monies be R% = 100r (r the fractional rate of interest) for each of the N
periods.
At the start the amount owing in dollars is A. At the end of the first period after

making the first payment $P the amount owing is

A(1 + r) − P

at the end of the second period it is

(A(1 + r) − P )(1 + r) − P = A(1 + r)2 − P (1 + (1 + r))

at the end of the third period it is

(A(1 + r)2 − P (1 + (1 + r)))(1 + r) − P = A(1 + r)3 − P (1 + (1 + r) + (1 + r)2)

At the end of the N th period it is

A(1 + r)N − P (1 + (1 + r) + (1 + r)2 + · · · + (1 + r)N−1).
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We recognise the expression multiplying P to be a geometric series of N terms with
common ratio (1 + r). This sums to

(1 + r)N − 1

(1 + r) − 1
=

(1 + r)N − 1

r

so the amount owing at the end of the N th period is

A(1 + r)N − P
(1 + r)N − 1

r
.

The payment P is adjusted so that this amount is zero, i.e.,

A(1 + r)N − P
(1 + r)N − 1

r
= 0

so that

P =
A(1 + r)Nr

(1 + r)N − 1
=

Ar

1 − (1 + r)−N
.

We nowmodify the expressions to account form payments per year over n years. (e.g.
monthlym = 12). The total number of monthly payments isN = nm and the fractional

interest per month is
r

m
when we choose to leave r =

R

100
to denote the interest rate

per annum. The monthly payment Pm to pay the loan is

Pm =
Ar

m

1 − (1 + r

m
)−nm

.

Pm may be calculated directly on most hand-held calculators but the variation of Pm

with interest rate or number of years is not transparent. We note however that Pm is
the initial interest Ar/m accumulated in the first month of the loan, divided by the
denominator

1 − (1 +
r

m
)−mn = 1 −

[(

1 +
r

m

)m]−n

which accounts for the complicated interest effects over the whole course of the loan.
For m large enough

(

1 + r

m

)m
may be approximated by the exponential function

exp(r) = er since

lim
n→∞

(

1 +
r

m

)m

= er

which we show later in the Appendix. The approximation will work best for r small
andm large. Using this approximation we obtain,

Pm ≈
Ar

m

1 − e−nr
.

How well does it work in a typical case? Take m = 12 (monthly), n = 20 (years) and
r = 0.1 (10% p.a. interest).

1 −
(

1 +
r

m

)−mn

= 0.8635384

1 − e−rn = 0.8646647.
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Notice the approximation does not differentiate betweenmonthly and say weekly pay-
ment as far as the denominator is concerned. The long-term interest effects are approx-
imately encapsulated as a simple exponential.

Appendix

Finding lim
m→∞

(

1 + r

m

)

m

.

The limit can be demonstrated in lots of ways, some easier or more elegant than
others. It can be done directly from the binomial theorem but this way, although intu-
itive, is cumbersome to make rigorous. We have used the series for ln(1 + x) in Part 1
(Parabola Vol 36 No 1) and can prove the result using it.
For a given value of r (positive, negative and zero) takem as a positive integer with

m > |r|.
Let E(m) =

(

1 + r

m

)m
. Then E(m) > 0 and taking logarithms

ln E(m) = m ln
(

1 +
r

m

)

= m

(

r

m
−

1

2

( r

m

)

2

+
1

3

( r

m

)

3

· · ·

)

= r

(

1 −
1

2

( r

m

)

+
1

3

( r

m

)2

· · ·

)

For largem each of the terms in
r

m
separately tends to zero but we need to be sure that

their infinite sum also does.
Rearranging gives,

| lnE(m) − r| =
r

m

∣

∣

∣

∣

1

2
−

1

3

( r

m

)

+
1

4

( r

m

)2

· · ·

∣

∣

∣

∣

≤
r

m

(

1

2
+

1

3

(

|r|

m

)

+
1

4

(

|r|

m

)2

+ · · ·

)

<
r

m

(

1 +
|r|

m
+

(

|r|

m

)2

+ · · ·

)

=
r

m
×

1

1 − |r|
m

summing the infinite geometric progression since |r|/m < 1.
Asm → ∞ this approaches 0. Hence ln E(m) → r asm → ∞ from which we deduce
that

lim
m→∞

E(m) = er for all r.
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Amore elegant proof, but requiring integral calculus, notes that2

m

∫

r

0

dt

t + m
= m(ln(m + r) − ln m)

= m ln

(

m + r

m

)

= m ln
(

1 +
r

m

)

= ln E(m)

But

m

∫

r

0

dt

t + m
=

∫

r

0

(

1 −
t

t + m

)

dt

= r −

∫

r

0

t

t + m
dt

→ r as m → ∞.

Hence we have lim
m→∞

ln E(m) = r or lim
m→∞

E(m) = er as above.
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