
Parabola Volume 36, Issue 3 (2000)

Does P = NP? A real-life mathematical problem

Terry Tao1

This will be an article about the mathematics of algorithms. An algorithm is a set of
rules and instructions used to solve a real-life problem. Often this algorithm will then
be run on a computer.

One of the most important problems here is “does P = NP?” Mathematicians and
computer scientists have been working on this problem for 25 years, but have not yet
solved it.

Example
As a hypothetical example, suppose that you want to build a reverse phone direc-

tory of Sydney. (A reverse phone directory has the phone numbers in order, and gives
the name for each number).

Your only tools are (a) a Pentium III computer; and (b) a CD-ROM version of the
Telstra White Pages. These Pages contain the names and numbers of N = 3, 000, 000,
in alphabetical order of the names.

You’d like to be done with this by dinner-time.

First try: Insertion sort
The most obvious thing to try is to start with an empty list and insert the numbers

and names in one by one in order. This is known as insertion sort.

For instance, suppose we have already sorted the first 5 names in the white pages:

1. 82490931 Abandowitz, E.
2. 91435124 Abadeen,W.
3. 93210946 Abe, L.
4. 94029382 Abacan,M.
5. 98371342 Aarden, J.

The next entry in the White Pages is ”Abraham, S. - 93948234”. We would search
our list for where 93948234 lies, i.e. between position 3 and 4. Then we would insert
this entry in, and bump all the later names up by one:

1This article is based on a talk given at the UNSW School of Mathematics Competition UNSW prize
ceremony by Terry Tao, a visiting Professor at UNSW.

1

1. 82490931 Abandowitz, E.
2. 91435124 Abadeen,W.
3. 93210946 Abe, L.
4. 93948234 Abraham, S.
5. 94029382 Abacan,M.
6. 98371342 Aarden, J.

We then repeat this 2,999,994 more times.

How long will insertion sort take?
Insertion sort is slow. Suppose that we’ve already inserted 1,000,000 numbers and

names, and are just about to insert the 1, 000, 0001th.
To perform the insertion, we have to (a) find the place to insert the name, then

(b) bump all the names after this up by one. On the average, it will take about 500,000
searches to find the place to insert, and another 500,000 commands to bump the names.
So we’re looking at about 1,000,000 commands just to insert the 1, 000, 001th number.

This means that the total number of steps needed is about

0 + 1 + 2 + 3 + . . .+ 2, 999, 999 ≈ 4, 500, 000, 000, 000.

On a Pentium III, this will take about 50 hours.
One could use some fancy programming tricks to speed this up a bit, but only by a

factor of 10 or so.

A better algorithm: Merge sort
You could try to speed up insertion sort by programming more efficiently, or buy-

ing a faster computer. But a much cheaper thing to do is to come up with a better
algorithm. One such algorithm is “Merge sort”.

Merge sort is a “divide and conquer” strategy, and works like this. Take the white
pages and divide it into two equal halves (“A-M” and “N-Z”). Sort the two halves
separately. Then merge the two sorted lists together.

Of course, this begs the question of how to sort the two halves. The answer is to use
Merge sort again, i.e. divide each half into equal quarters, sort each quarter separately,
and then merge them together. To sort the quarters, you divide up into eighths, and so
forth, until you are down to just sorting one or two names, which is very easy.

Merging two lists of size N takes about 2N steps (Why?). Thus, for instance, the
merging the two halves of the White Pages together would take 3, 000, 000 steps.

Since 3, 000, 000 ∼ 221, one would need to do about 21 levels of Merge sort:
The total number of steps needed is therefore about

≈ 3, 000, 000 ∗ 21 = 63, 000, 000.

A Pentium III could do this in about 1 second (give or take a factor of 10).

2

Sorted list of 750,000 names

Sorted list of 3,000,000 names

Sorted list of 1,500,000 names Sorted list of 1,500,000 names

Merge (3,000,000 steps)

Merge (1,500,000 steps) Merge (1,500,000 steps)21 levels

(750,000 steps) (750,000 steps) (750,000 steps) (750,000 steps)

Sorted list of 750,000 names Sorted list of 750,000 names Sorted list of 750,000 names

The task of sorting N objects is a “polynomial time” algorithm, because the number
of steps needed is at most a polynomial in N (N2 for insertion sort, N log2N for Merge
sort). The set of all polynomial time tasks is called P.

Example: Booking examination rooms
Suppose you are an administrator for UNSW. Your job is to assign examination

times for N = 100 courses. The exams must be in exam week, Monday to Friday, and
either in the morning or afternoon, so there are 10 time slots available.

This seems easy: just put 10 courses in each time slot. There is, however, a catch.
There are 1000 students, taking three courses each. A student can’t take two different
exams at the same time, so you have to avoid clashes. In other words, if student X is
taking courses A, B, C, then you have to assign different time slots to A, B, C.

It may be that there are so many clashes that a time-table is impossible. However,
we would like an algorithm which will provide a workable time-table whenever one
exists.

First attempt: brute force search
One thing you can do is try all the possible exam assignments one by one. After

all, once you have chosen the exam times, it’s an easy matter for the computer to check
each student one by one and make sure there is no clash. (This takes about 1, 000 steps).

Unfortunately, there are a large number of possible assignments. Each course has
10 choices of time slot, and there are 100 courses, so there are 10100 possibilities. So the
total number of computations needed could be as bad as

10100 × 1000 = 10103.

On a Pentium III, this would take about 1082 millennia.

3

This is so slow that no amount of technological improvement can help:
1000x improvement in speed of computer: 1079 millennia
Clever programming reducing number of steps by 1000: 1076 millennia
Using 100 million computers linked up via the internet: 1068 millennia
Eliminating 90% of the students: 1067 millennia

Is there a better algorithm?
Clearly, brute force is not the right answer to this problem. Is there a better one?
There are partial algorithms for this problem which work 90% of the time, or only

avoid clashes for 95% of the students, etc., but this is not completely satisfactory.
The time-tabling problem is an example of a polynomially-verifiable problem: once

you actually have a time-table, it is very quick (polynomial time) to check whether the
time-table works or not, but it’s very difficult to find the time-table in the first place.
The class of all such problems is called NP.

The P = NP problem asks: are all polynomially verifiable problems solvable in
polynomial time? If this is true, then many problems of the above type (e.g. air-
plane scheduling, or any other matching of resources to needs) would be solvable very
quickly, and this would have tremendous economic consequences.

On the other hand, most encryption and security procedures (e.g. the encryption of
credit card transactions on the internet) rely on the assumption that P 6= NP (because
the problem of cracking an encryption code is usually NP).

Despite 25 years on work on this problem, we are nowhere near a solution. To give
some idea of its importance, the Clay Mathematical Institute in Boston has offered US
$1 million for a proof of either P = NP or P 6= NP!

The time-tabling problem is an example of a NP-complete problem. What this means
is that if you can figure out how to solve the time-tabling problem in polynomial time,
then you can solve all other NP problems in polynomial time (thus showing that P =
NP). There are many other known examples of NP-complete problems.

Further reading
The Clay Institute page for the P = NP problem is at

www.claymath.org/millenium-problems/p-vs-np-problem
The book “Computers and Intractibility, a guide to the theory of NP-completeness”, by
M. Garey and D. Johnson (W.H. Freeman and Co., San Francisco, 1979) is a thorough
introduction to the subject, and contains a list of over 300 NP-complete problems.

4

www.claymath.org/millenium-problems/p-vs-np-problem

