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Using Markov chains to model bathroom queues

Johnny Wong'

You come home from your morning run sweaty and ready to shower. As you
saunter to the bathroom, you see the locked door and bow your head in defeat. Stand-
ing in your sweat-soaked singlet, your little brother pokes his head out of his room,
chucks a deodorant at you before telling you he has dibs on the bathroom after you
sister is finished. You throw the deodorant can back at him and curse your house for
having so few bathrooms.

Everyone has waited to use the bathroom at some point in their lives. It's common
sense that with fewer bathrooms or more people, the longer you’'d have to wait. But
can we mathematically calculate how long we can expect to wait every day? One
approach is with a technique called Markov chains.

For the rest of the article, let’s consider a household with 1 bathroom shared be-
tween 4 people.

Markov chains

To set up a Markov chain, you need several things: states that represent the possible
scenarios, probabilities of moving from state to state throughout some measure of
time. We will unpack these 3 things in more detail below.

States

A state describes the situation of interest at different points in time.

For our bathroom queueing problem, we are interested in how many people are
using, or wanting to use, the bathroom at any point in time. So how many states do we
need? Well with 4 people, there can be from 0 to 4 people wanting to use the bathroom,
so we need 5 states.

Let’s label each state 0, . . ., 5, where state 0 means that no one is wanting to use the
bathroom. State 4 means that four people want to use the bathroom. Since there is only
one bathroom available, this means that 1 person is using it and there are 3 queuing up.

Time

Time can be either discrete or continuous. With this scenario, it is most appropriate to
use continuous time as people can enter and leave the bathroom at any point in time.
Let’s represent the state at time ¢ as X;.
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Probability

How does the system jump from state to state? A fundamental assumption of Markov
chains is that the probability of moving from any state to the next is not impacted by
any past information, and only depends on the current state.

In continuous time, these probabilities are represented as transition rates of moving
from state to state.

Transition rates What is a transition rate? Roughly speaking, it is the probability per
time unit that the system makes a transition from one state to the other. If ¢; ; represents
the transition rate from state ¢ to state j where ¢ # j, and if the current state is i, then
the probability that the state is j after time h has passed is roughly h x ¢; ; for small h,
SO

Pr(Xyn=j|Xy =1
Qi ~ il Hhhj‘ =1 for small A .

More precisely,

iy P& = 51X =)
Bg = 1% h

As you can imagine, the transition rate affects the expected time until there is a tran-
sition. If the transition rate out of a state is ), then the expected time until a transition
is + time units.

Of course, when we specify rates, we need to specify a standard unit of time.
It doesn’t matter what we choose, but let’s choose our unit to be one minute. So if
¢o1 = 0.2, then there is a roughly 20% chance that if the system is currently in state 0
(i.e., no-one is waiting to use the bathroom), then it will be in state 1 after one minute

(i.e., one person will be waiting to use the bathroom after one minute).

Determining transition rates Let’s consider a house with just one person. If the per-
son is not currently in the bathroom, then what is the transition rate of that person
going to the bathroom? A quick Google search suggests that people go to the toilet
around 7 times a day. Taking into account time spent sleeping (approximated at 8
hours), that’s a rate of 7 times per 16 hours, or ﬁ = 0.0073 per minute. Denote this
as \.

Bathroom trips take a varying amount of time. For simplicity, let's assume an aver-
age trip takes 5 minutes. This implies a certain transition rate of leaving the bathroom.
In Markov chain models, the transition rate out of a state is the inverse of the expected
time spent in the state. If we let this transition rate be denoted by 1, then 1 = % =0.2.

Now that we have estimates for ), the rate of one person going to the bathroom,
and i, the rate of one person leaving the bathroom, then we can easily determine the
transition rate between states.

In state 0, there are 4 people that can potentially need to use the bathroom, each
with a transition rate of A\, meaning ¢, = 4\. In state 1, there are only 3 people left
with the potential to add to the queue, so ¢; 2 = 3.
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Figure 1: Diagram showing transition rates between the 5 states.

Using similar logic, we get the general expression:
Giip1 = (4 —1)A fori < 4.

What about the transition rates of leaving the bathroom? In any state apart from 0,
one person is using the bathroom, and the rate of transition for that person is y, so

Qii—1 = I fori > 0.

It is assumed that multiple people can’t suddenly need to use the bathroom or leave
the bathroom at the exact same time, so each state can only reach the state one above
or below it, meaning;:

qu:O fOF‘i—j|>1.
Here, ¢;; is the rate of transition from state 7 to itself, so it is the negative of the sum of
all transition rates out of the state:

Qii = — Z Qi -

JF

Transition rate matrix Once these transition rates have been determined, they can be
arranged in matrix form. Each column and row represents a state, and each element
¢;,; of the matrix is the transition rate of moving from state i to state j.

State 0 1 2 3 4
0 —4\ 4\ 0 0 0
1 o —(p+ 3N 3 0 0
Q= 2 0 L —(p+2X) 2\ 0
3 0 0 i —(p+A) A
4 0 0 0 W —
After substituting = 0.2 and X = -, we get
—0.029  0.029 0 0 0
0.2 —0.222  0.022 0 0
Q= 0 0.2 —0.215 0.015 0
0 0 0.2 —0.207 0.007
0 0 0 0.2 -0.2

You can verify a few things about this transition matrix:

e The sum of each row equals 0. This is because the “rate” at which the state stays
the same is exactly negative of the sum of the rates at which the state changes.

e The only negative elements are on the diagonal.
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Long run proportions

Now that the system is fully described, we can link it to our original problem. Living
in a house of 4 people with 1 bathroom, what is the amount of time one could expect to
wait for the bathroom each day? The states where someone is waiting to use the bath-
room are states 2, 3 and 4, so let’s start by calculating the proportion of time we expect
this system to be in these states. To do this, we need to find the long run proportions
of each state.

Let m; represent the proportion of time that the system is spent in state i if run
forever. Since these are proportions, we have ) * 7; = 1. In the long run, the system will
reach an equilibrium where everything balances perfectly. In this context, balance can
be represented as:

T X — Qi = ZWJ‘ X Qji -
JF

On the left hand side, we have the rate of transition out of state i. On the right, we
have the rate of transition into state i. Equating these implies that we have reached an
equilibrium. Another way of writing this is as follows:

Z'/Tj X qj; =0 foralli.
J

Now let’s define the vectors = (m,...,m;) and 0 = (0,...,0). Another way to write
the above equations is as a homogenous system of linear equations:

T =0
where we have the constraint ) | 7; = 1, which can also be expressed as

k=1
where F is a 5 x 5 matrix whose elements are all 1 and 1 is a row vector of 1s.

Since
TQ+E)=mQ+7E=0+1=1,

we find that

T=1Q+E)".

Computer packages can be used to calculate

0971 1.029 1 1 1
1.2 0778 1.022 1 1
QQ+E)'=1] 1 1.2 0785 1015 1
1 1 1.2 0.793 1.007

1 1 1 1.2 08
and we find the equilibrium vector:

7 = (0.8599, 0.1254,0.01372,0.001, 0.00003646) .
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In this equilibrium state, the bathroom is empty 86% of the time and, for 12.5% of
the time, there is one person using a bathroom and no one waiting. We see that, for
ma+ms+my = 1.48% of the time, there is at least one person waiting to use the bathroom.
Out of our 16 waking hours, this corresponds to about 14 minutes a day during which
at least one person is waiting to use the bathroom.

To find out the amount of time per person, it might be tempting to simply divide
that number by 4, but it’s not quite so simple. To demonstrate why, consider two
people waiting. You start waiting at 12:00, and manage to go at 12:15. Your brother
starts waiting as 12:05 and manages to go at 12:20. You've each waited 15 minutes
but the total amount of minutes that either person was waiting is only 20 minutes.
Although you were both waiting from 12:05 to 12:15, this measure doesn’t double the
waiting time.

You must calculate the sum of everyone’s wait time and divide it by the number
of people. In the above example, 2 people waited 15 minutes each, so the calculation
would be (15 + 15)/2.

To find the sum of everyone’s waiting time, notice that for 1.372% of the time, there
is one person waiting; for 0.1% of the time, 2 people are waiting; and for 0.003646% of
the time, 3 people are waiting. Therefore, the sum of everyone’s waiting time is

(1.372% x 14 0.1% x 2 + 0.003646% x 3) x 16 x 60 +~4 = 3.8,

leaving each housemate with an expected 3.8 minutes (3 minutes 48 seconds) of wait-
ing time per day.

Waiting time under different scenarios

The beauty of having a mathematical model is that it can shed insight into the system
under different conditions. The calculation above assumed 4 people and 1 bathroom;
let’s see what the waiting time would be with different numbers of people and bath-
rooms. The results are given in Figure 2 below.

What's interesting to see is that an additional person doesn’t add too much to the
expected daily waiting time, and adding an extra bathroom dramatically reduces the
expected waiting time. Under this model, 3 people sharing one bathroom spend more
waiting time than 15 people with 2 bathrooms!



Expected minutes per day waiting to use the bathroom
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Figure 2: The average waiting time for each person under different scenarios

Limitations of the model

Now that we’ve answered our original question, it is important to look back on the
process and acknowledge any limitations. There are a few key assumptions that are
characteristic of Markov chains.

Memorylessness One of the main assumptions of Markov chains is the Markov prop-
erty. This is also referred to as memorylessness because it doesn’t matter what’s hap-
pened in the past: the behaviour of the system only depends on the current state.

We've assumed that the expected time spent in the bathroom is 5 minutes. So as
soon as someone walks into the bathroom, it is expected they’ll leave after 5 minutes.
Under the Markov property, if 3 minutes passes and they’re still in the bathroom, then
the expected time left is not 2 minutes, but still 5 minutes.

Similarly, the rate at which someone goes to the bathroom stays the same regardless
whether they’ve gone 10 times already or haven’t gone at all.



While memoryless is not necessarily a realistic assumption, the final implication is
that bathroom times are exponentially distributed and the number of bathroom trips per
day is Poisson distributed and this is quite reasonable.

Independence Another assumption of the Markov chain model is independence.
This assumption states that the each person acts independently of everyone else, and
that the time spent in the bathroom is independent of everything. In real life, this
assumption is likely not valid. Here are just a few examples of scenarios where inde-
pendence isn’t satisfied:

e Most people want to use the bathroom at similar times during the day, such as
in the morning after waking up and at night before bed, so the rate of using the
bathroom is dependent on the time of day.

e The expected time in the bathroom could be dependent on the time of day as
most people shower in the morning or night.

e The expected time in the bathroom could be dependent on what people have
already done in the bathroom today (e.g., already showered).

Concluding remarks

The problem above is a special case of queuing theory. Markov chains can be used
to analyse many other practical problems. To name a few, Google uses them to rank
webpages, insurers use them to price safe driver discounts, and biologists use them to
model population processes.

As discussed above, Markov chains hold certain assumptions that may not be com-
pletely accurate in real life. But in the words of renowned statistician George Box,
“All models are wrong but some are useful”. Mathematical modelling is never precise,
and it is the art of a mathematician that embraces the imperfection and turns it into
something useful.



Code

All calculations were done in Python 3. Below is the code used to calculate the numbers
in Figure 2 and display them as the heat map.

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

def min_waiting(n,k,trips_per_day=7, avg_minutes_spent=5, waking hours=16) :
777
n people in a house with k bathrooms.
Returns the number of minutes each person can expect to wait per day
r 77
# Rate of going into bathroom, underscore as lambda is Python keyword
lambda_ = trips_per_day / waking_hours / 60.0
mu = 1l/avg_minutes_spent # Rate of leaving

# Transition matrix
Q = np.zeros((n + 1, n + 1))
for i in range(n + 1):
if 1 < n:
Q[i] [1+1] = (n—-1i) = lambda_ # transition into higher state
if i > 0:
Q[i][1-1] = min(k, i) » mu # transition into lower state

E = np.ones (shape=(n+l, n+l))

pi = np.matmul (np.ones (shape=(1, n+l)), np.linalg.inv(Q + E))

pi = pi.reshape(n+l)

assert np.all (np.matmul (pi, Q) < le-10) # Check that solution works

ppl_minutes = 0
for ppl_waiting, time in enumerate(pilk:]):

ppl_minutes += ppl_waiting * time # Sum up total wait time
prop_wait = ppl_minutes/n

min_wait_per_day = prop_wait » waking_hours * 60
return min_wait_per_day
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# Simulations, plot heatmap

#AFRAFAHA AR RHA A AAARRAAFARFARAREAR R AR A AR RA AR AAA A A AR AR A A A AH
MAX_PEOPLE = 15

MAX_BATHROOM = 3

results = pd.DataFrame (0.0, index=range (MAX_PEOPLE, 1, -1),
columns=range (1, MAX_BATHROOM + 1))

results.index.name = ’'Num_people’

for num_people in range (2, MAX PEOPLE + 1):




for num_bathroom in range(l, min (num_people, MAX_ BATHROOM + 1)):
results[num_bathroom] [num_people]=min_waiting (num_people,
num_bathroom)

print (' Results calculated’)

sns.

plt
plt

heatmap (results, annot=True, annot_kws={"size": 15})

.xlabel (' Number of bathrooms’)
.ylabel (! Number of people’)

plt.
plt.

title ('Expected minutes per day waiting to use the bathroom’)
show ()




