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The problem of the aircraft squadron revisited

Marius-F. Danca1, Guanrong Chen2 and Nikolay Kuznetsov3

The problem of the aircraft squadron is that of determining how far some aircraft
from a squadron can fly if the aircraft are able to share fuel. Alternatively, how many
planes are needed for some plane to fly a given distance, and what fuel-sharing strat-
egy would be used to achieve that?

These sort of problems attracted quite some attention for many years. Although
these problems might seem obsolete today, given that long-distance records for passen-
ger planes shared by Airbus and Boeing are over 20,000 km (a Boeing 777-200 LR broke
after non-stop flying 21,601 km in about 23 hours from Hong Kong to London [1]), find-
ing an algorithm to cover a given distance with an aircraft squadron remains an inter-
esting recreational mathematical exercise. In [2], the problem of determining the num-
ber of aircraft in a squadron for transport aid over a certain distance is rigourously ana-
lyzed while, in [3], a graphical method is proposed for solving the problem. We present
here some generalizations in an accessible manner.

Compared with the jeep problem (see e.g. [5, 6, 7]), the aircraft squadron offers more
satisfaction, at least regarding the possibility to deal with large maximum distances.
An interesting article on a closely-related topic, entitled “How Not to Land at Lake
Tahoe!”, was published in [8].

The following assumptions are made:

All of the squadron planes are identical, having the same fuel tank capacity F
and the same km/L efficiency;

With one fuel tank, a plane can fly distance D;

All aircraft can instantaneously share the fuel among themselves at any moment;

Each aircraft takes off with a full tank of fuel;

All aircraft must return home, using up all fuel upon landing.

Let TA designate the aircraft which carries the load and SA the planes which will
supply the TA plane with fuel.

To this end, we raise the following questions:
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What is the maximum distance Dmax which can be covered by a given aircraft
squadron?

How many aircraft are necessary in order to carry out a desired operation over a
certain distance?

How long will the whole operation take?

Which is the time moment when some SA aircraft fuels other squadron aircraft?

When must SA aircraft take off again to meet TA at its return?

In order to solve these problems, a graphical method was in [2] chosen for the cases
of one, three and five aircraft, respectively. Starting from these results, we present a
simple analytical method to obtain the general solution of n aircraft and also suggest a
new graphical approach.

1 Graphical triangular solution

In a time-space coordinate system (t, d), we represent the trajectory of an aircraft by a
line segment that intersects the origin (at the moment t = 0) and has a slope that varies
with the speed v. More precisely, it represents the distance travelled as a function of
time (recall that the aircraft must return to the base after a certain time). This plane
representation allows us to follow the flight paths efficiently over time; for instance,
the returning and the departing points are the same. In fact, it is sufficient to consider
a single distance d. In Figure 1, we show the simple case n = 1 with a single aircraft
TA which has to carry its load of fuel to the destination M . With a full tank of fuel, TA
will travel the maximum distance D/2 using F/2 fuel. It will then parachute the fuel
for pick-up by another plane, and will finally return to the base with an empty tank.

Figure 1: One aircraft (n = 1) in the space (t, d) (map from [4]).
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The case n = 3 is illustrated in Figure 2a. Two aircraft take off (the TA aircraft
and an SA aircraft, SA1) at the same moment and they are in the same direction at the
moment t = 0. After having used 1/3 of the fuel F to travel D/3 of the distance, the
SA1 aircraft transfers 1/3 of its fuel to TA at the fueling point S1 and keeps F/3 fuel in
order to return to the base. Next, the TA aircraft, having a full tank of fuel, will be able
to travel a further distance D/2 in one direction and D/2 back. Thus, the maximum
distance that it can travel is D/3 + D/2 = 5/6D. But, upon its return after having
traveled D/2 from point M , it will need assistance (as the fuel tank will be empty), and
so a second aircraft, SA2, starts to fly out to meet the TA for refueling, which takes
place at distance D/3 from the base (a point symmetric to S1). At that moment, SA2

transfers F/3 fuel to TA; thus, both aircraft have F/3 fuel, enough to return to the base.

Figure 2: a) Three aircraft (n = 3). S1 and S ′1 are fueling points and M represents the
destination point. The maximum distance flown by TA is Dmax = D/3 +D/2 = 5/6D.
b) Five aircraft (n = 5). The maximum distance is Dmax = D.

The case n = 5 is illustrated by Figure 2b. Three aircraft take off (two SA and one
TA). At distance D/4, at the fueling point S1, SA1 transfers F/4F fuel to SA2 and F/4
fuel to TA, after which it returns with F/4 fuel to the base. At D/2 (point S2), SA2 fuels
TA with F/4 and keeps F/2 necessary for its return to the base. At this point, TA has a
full tank of fuel, with which it travels D/2 to M and then D/2 towards the next fueling
point with SA3, at point S ′2, and so on. The maximum distance covered in this case is
Dmax = D/4 +D/4 +D/2 = D.
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2 Generalization

Cases n = 7, 9, . . . and so on are now easy to deduce. Due to the symmetry of the prob-
lem, the number of SA aircraft must be even, say 2m, and the total number of squadron
aircraft is n = 2m+ 1. We wish to find a generalization of the method described in the
previous section for n = 2m+1 aircraft. In this scenario, TA and m SA aircraft take off
at the same time, and m SA aircraft supply the TA aircraft during its return. At each
refueling point for TA, exactly one SA aircraft will contribute fuel and fly back to base.
We will find the maximum distance covered by the squadron or, more precisely, by TA
from the base to the destination point M . We will also find the amount of fuel needed,
the moment of fueling between TA and each SA, the moment of return of each SA, the
moment of departure for an SA to help the TA at its return, and the total flight time. We
will prove that all of the SA aircraft can be used for both the forward journey of TA to
the destination point M and the return journey of TA back to the base.

Maximum distance
Consider the first part of TA’s journey and denote the m fuel-sharing points by

S1, S2, . . . , Sk (see Figures 2a and 2b). Also, denote by ASk the AS plane that will con-
tribute fuel at the point Sk and then fly back. Suppose that distances between two
fuel-sharing points are equal and that each plane uses f in fuel to fly from each shar-
ing point to the next. At each point Sk, there are m + 1 − k aircraft in the air, namely
TA and m − k SA aircraft. At the previous point Sk−1, SAk had its tank filled, then
consumed f to fly from Sk−1 to Sk. It needs kf in fuel to return home and gives the rest
of the fuel to TA and the other m− k SA aircraft (see Figure 3 in which just two SA are
considered). By design, we require that this re-fueling strategy to ensure that TA and
the other m − k SA aircraft will now be fully re-fueled, after having received f in fuel
each. Therefore, SAk must give them together (m − k + 1)f in fuel. The fuel capacity
of SAk is F = f + kf + (m− k + 1)f = (m+ 2)f , so

f =
F

m+ 2
=

2F

n+ 3
. (1)

Note that this sharing of fuel means that each plane SAk and the plane TA starts with
a full tank of fuel and returns to base with no excess fuel, regardless of distance flown.
In particular, each plane consumes F in fuel during the whole operation.

By symmetry, the return of TA from M involves the same fuel consumption, so the
fuel needed for all aircraft during the total flight only depends on the number n = 2m+1
of aircraft and of their fuel tank capacity F :

Ftotal = (2m+ 1)F = nF .
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Figure 3: Starting and fueling points S0 and S1 respectively for two SA aircraft.

The distance D that one plane can fly on a full tank of fuel F can be expressed as
D = cF for some constant c measured in km/L. The maximal distance Dmax that the
squadron can fly is the distance from the base to M , or, in other words, half of the
distance that TA flies in total. Since TA consumes (mf + F + mf)/2 = mf + F/2 in
fuel to reach M , Equation (1) implies that

Dmax = c(mf + F/2) = c
( mF

m+ 2
+ F/2

)
= c

3m+ 2

2m+ 4
F

so
Dmax = D

3m+ 2

2m+ 4
= D

3n+ 1

2n+ 6
. (2)

By Formula (2), we can obtain the maximum distance for large n, which is unfortu-
nately finite when using this method, namely Dmax → 3

2
D.

Flight time
Next, consider the moments of fueling for SA1, SA2, . . . , SAm, in the departing

phase. The distance covered by some ASk is kd = 2kD/(n + 2) where d is the dis-
tance between one fueling point Sk−1 and the next Sk. Thus, the moments of fueling tk
can be found from the space equation: kd = vtk where v is the speed of the aircraft:

tk = k
D

v

2

n+ 3
. (3)

The moments of return of SA aircraft are 2tk = kD
v

4
n+3

, and the last SA moment of return
for SAm is

2tk =
D

v

2(n− 1)

n+ 3
. (4)
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Figure 4: a) Fueling points and related times b) Graphical rhomboid solution.

By symmetry, the time needed to fly to the destination point M and the return time
to the base are the same. Therefore, the total time is

T =
2Dmax

v
=
D

v

3n+ 1

n+ 3
.

Next, we are interested in finding out the conditions under which some aircraft SA can
help the TA both to depart and also to return. For this purpose, we need to find out if,
at the destination point, there are returned SA aircraft and which could be send back
to meet the TA at its return. Denote by TM = T/2 the moment when the TA arrives
with the fuel supply at the destination point M (see Figure 4a):

TM = T/2 =
D

v

3m+ 2

2(m+ 2)
. (5)

Then
TM − tm =

cF

v
> 0 , (6)

which means that TM > tm. Since tk < tm < TM , for all k = 1, 2, . . . ,m, at the moment
TM , all of m aircraft SA returned to the base and, therefore, can be used to help the TA
at its return.

Therefore, a sufficient number of distinctive aircraft taking part in the operation is actually
m+ 1, not 2m+ 1.

Relation (6) reveals the fact that regardless of the aircraft speed v (the slope of the
flight direction in the (t, d) plane), all SA aircraft returned to the base when the TA
arrived at the point M .

Due to the problem symmetry, the starting moments t′k for SAk, which have to take
off to help the TA, can be determined at the moments tk:

t′k = T − 2tk =
cF

v

3n+ 1− 4k

n+ 3
.
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It is easy to verify the problem symmetry, namely, the fact that all m landed aircraft
ASk, for k = 1, 2, . . . ,m = (n − 1)/2, are ready to take off again when the TA returns
from M (similarly to relation (6)) since

TM − t′k =
cF

v

−3n− 2 + 8k

2(n+ 3)
< 0 for alln and k = 1, 2, 3, . . . , (n− 1)/2 .

For example, for n = 3, one has TM − t′k = (−4 + 4k)/3 = 0 when k = 1. This means
that one single SA aircraft, which took off with the TA, just arrived and, after filling
up “instantly” its tank, must take off to meet the TA at its return. For n > 3, both SA
aircraft have returned before time TM , and therefore they are ready to fly. For example,
for n = 5, one has TM − t′k = (−17 + 8k)/8 < 0 for all k = 1, 2. This means that the
moment t′k, when SAk must take off, is later than the arrival moment of the last aircraft
SAm, which helped the TA flying to the destination point M .

3 Graphical rhomboid solution

To extendDmax as much as possible, we propose a novel generalization of the graphical
method, a rhomboid method. Based on the harmonic series divergence, we can increase
Dmax arbitrarily.

We draw k rhombuses in succession, starting with the upper tip of the triangle,
with the side lengths D/2, D/4, . . . , D/2k (see Figure 4b). The upper triangle is closed,
taking the base through the lateral kth vertex of the rhombus with a desired side length
equal to D′max. Now, the maximum distance is given by the following relation, based on
the sum of the harmonic series:

D′max =
D

2
(1 +

1

2
+

1

3
+ · · ·+ 1

k
) ,

with the number of SA aircraft beingm = 2k−2 in this case, in contrast to the previous
method in which m = k − 1.

Compared with the triangular method, for a sufficiently large number of aircraft,
upon the return of the SA planes on the outward journey, they can be assisted by other
SA aircraft which fly to meet the TA at its return at the fueling points P (see Figure 4b)
which is the crux of this method. Thus, some SA aircraft could only serve to help other
(returning) SA aircraft in one or even several meeting points P .

Next, we show graphically that Dmax (given by the relation (2)) and D′max (given
above) verify, counter-intuitively, the following relations (see Figure 5a):

D′max ≤ Dmax for k ≤ 5 , (7)

and
D′max > Dmax for k > 5 . (8)

The equality holds for k = 1. The first inequality can be deduced numerically. For
k = 1, it is the case of one TA aircraft (in the triangular method: n = 1 and m =
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Figure 5: a) Graph of difference D′max −Dmax. b) Graphical solution of equation (11).
.

k − 1 = 0). Thus, D′max = D/2 = Dmax. For k = 2 (in the triangular method: n = 3,
m = k − 1 = 1), D′max = 3/4D = 0.75D < 5/6D = 0.83D = Dmax. The same happens
for k = 3, 4 and 5. For k > 5, the inequality changes. For example, for k = 6, it becomes
D′max = 1.225D > Dmax = 1.214.

For sufficiently large k, the key points P appear. Consider a simplified hypothesis
that at the return of TA, SA airplanes share fuels only at the meeting points S ′k but not
at points P . Thus, for sufficiently large k, the return time of the last SA, tm, becomes
bigger than TM . This, compared to the triangular method, implies the need for more
SA aircraft, some of which need to take off before the landing of all SA aircraft. For
example, in the case of k = 3 with 2× 3− 2 = 4 SA aircraft, tm (the same as that for the
triangular method, relation (4)) is tm = 0.8D/v, while TM , given by the relation (3), is
TM = D′max/v = D/(2v)(1 + 1/2 + 1/3) = 0.6D/v < tm.

Therefore, compared to the triangular method, more SA aircraft are necessary. Also,
more fuel is necessary. However, due to the existence of points P , the situation might
change.

4 Virtual application

Since 1 March 2016, the longest non-stop scheduled airline flight is Emirates flight
EK448 from Dubai, United Arab Emirates to Auckland, New Zealand; like its return
flight EK449, it flies a total of 14,200 km. The inaugural flight was an Airbus A380-800
but subsequent regular service flights are served by a Boeing 777-200LR: [1].

Consider the case of the Boeing 777-200LR Worldliner, with a 195,280L tank of fuel.
In November 2005, it set a world distance record for a commercial aircraft non-stop
flight - 21,601km - from Hong Kong to London Heathrow in about 23 hours [9].

Suppose, say, that somebody intends to carry some supply from North Pole to
South Pole, the round trip distance being approximately 2 × 18, 500km = 37, 000km.
Even with the above amazing capabilities, a Boeing 777-200LR could not manage to
accomplish the full round trip without refueling. However, they could do so with our
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methods and more planes.
1. Rhomboid method. By using the Euler-Mascheroni constant, γ, which in 50

decimals4 is (see e.g. [10]):

γ = 0.57721566490153286060651209008240243104215933593992 . . .

for large values of k, the partial sum of the harmonic series in (3) can be approximated,
for example, as follows [11]:

1 +
1

2
+

1

3
+

1

4
+ . . .+

1

k
≈ ln(k) + γ +

1

2k
− 1

12k2
.

Thus,

D′max ≈ D′max =
D

2

(
ln(k) + γ +

1

2k
− 1

12k2

)
. (9)

Therefore,

18, 500km =
21, 601

2
km

(
ln(k) + 0.577 +

1

2k
− 1

12k2

)
. (10)

By graphically solving this equation by finding the intersection between the horizontal
line y = 18, 500 and the graph of D′max in Figure 5b), one obtains the solution k =
[k0] = 5. Therefore, the squadron will consist of n = 11 aircraft (ten SA and one TA)
with Ftotal1 = 11×195, 280L = 2, 148, 080L. However, taking into account the P points,
this number could probably be substantially reduced.

2. Triangular method. Since 18500km < 3/2× 21601km = limn→∞Dmax, we luckily
have a solution to equation (2)5:

18, 500km =
3n+ 1

2(n+ 3)

21, 601

2
km

which, as expected, gives a better solution n = d2.215e = 3, i.e., two SA aircraft (ac-
tually one single SA aircraft to be utilized twice; see Section 2) and one TA aircraft.
Therefore, Ftotal2 = 3 × 195, 280L = 585, 840L � Ftotal1 . However under the above-
mentioned condition related to multiple potential fueling points P , Ftotal1 could dras-
tically be reduced.
Considering that the aircraft speed is v = 1000 km/h, the estimated total time of our
operation (relation (5)) is

T =
21, 601km

950km/h

3× 3 + 1

3 + 1
∼= 57h

which, compared with the time 2 × 25h = 50h of an ideal non-stop modern aircraft
(calculated with a dedicated software: http://flighttime-calculator.com/),
represents a reasonable result.

4Three digits are enough for our purpose.
5As the relation (2) shows, compared to the rhomboidal method, the triangular method cannot be

used to cover any distance larger than 3/2D.
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Compared to the rhomboid method, the triangular method uses fewer SA aircraft.
But, by using the rhomboid method, some of SA aircraft can serve other SA aircraft,
suggesting a possible optimal solution. On the other hand, the rhomboid method al-
lows unlimited maximum distances, theoretically of course, while the first method
leads to limited maximum distances. Nevertheless, as we saw in the “virtual” appli-
cation section, due to the huge capacity of the fuel tanks (for example a huge Airbus
A380 can carry about 320,000L of fuel!), the limited maximum distance given by the
first method can be used, even for aircraft with not-so-large fuel tanks.

However, both methods present the same drawback of flying over some countries
that may not agree with these proposed algorithms.

Summary

The aircraft squadron problem is an interesting problem and is an excellent exercise for
college teachers and students today. We have presented a generalization of the existing
method for determining the number of aircraft to transport aid over a certain distance.
Also, we have presented a new method which could provide a better solution for this
challenge. The following challenging questions arise:

What is the role of the ϕ angle at the point M in both methods (do not forget
about the fueling points for the rhomboid method!)?

Could one describe an equation for fuel and another for time, for the rhomboid
method?

Is the quantity of fuel for the second (rhomboidal) method greater than that for
the first (triangular) method?
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