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New relationships between Pythagorean Triples:
Composition and Decomposition of triples

Bodhideep Joardar1

This article shows that a new vista of relationships between Pythagorean triples
emerges when triples are composed with one another. It proposes six Composition
Laws for composing triples and generating all the infinitude of triples; and six Decom-
position Laws for breaking up triples into other triples. Composition and decomposi-
tion reveals that, in the infinitely large set of Pythagorean triples, every triple is con-
nected in a reversible parent/child relationship with every other triple; and any triple
can generate any other when composed with its appropriate pair. Also, any triple can
be seen as the result of a finite number of compositions as well as of an infinitely long
chain of compositions. A comparison with parent/child relationships suggested by
the linear transformations of Berggren-Price demonstrates the distinctiveness of the
proposed composition/decomposition approach.

Introduction and overview

Pythagorean triples are natural number triples of the form (a, b, c) for which the square
of the largest number, say c2, is the sum of the squares of the smaller two, here a2 + b2.
For instance, (3, 4, 5) and (3569, 2520, 4369) are Pythagorean triples since

32 + 42 = 52 and 35692 + 25202 = 43692 .

The label “Pythagorean” derives from the fact that the numbers (a, b, c) satisfy Pythago-
ras’ Theorem when represented as the side lengths of a right-angled triangle, with c as
the hypotenuse length. Pythagorean triples have a long history, and tables of these
triples were used extensively for easy and very accurate calculations by the Babyloni-
ans nearly 4.000 years ago [5].

If a, b, and c are relatively prime, with c being largest, then the Pythagorean triple
(a, b, c) is a primitive Pythagorean triple (PPT). For such triples, c and either a or b is odd
whereas the other is a multiple of 4. Pythagorean triples are infinite in number and,
since antiquity, algorithms have been developed to generate them.

1Bodhideep Joardar is a student at the South Point High School, Calcutta, India
(jbodhideep@gmail.com)

1



Algorithms: Algebraic identities
The most common algorithm for generating triples is to take two relatively prime and
distinct odd numbers s and t, where s > t ≥ 1, and simply generate the PPT(

st,
s2 − t2

2
,
s2 + t2

2

)
.

This algorithm, or its variant (m2 − n2, 2mn,m2 + n2), where one of m and n is even
and the other odd, comes from Euclid. There is also the algorithm, attributed to Plato,
where one starts from an even number uv and generates the triple, PPT or non-PPT,(
(u
2
)2 − v2, uv, (u

2
)2 + v2

)
if u

2
> v, or

(
u2 − (v

2
)2, uv, u2 + (v

2
)2
)

if u > v
2
. In fact, there are

a host of algorithms for generating triples, like

(2n+ 1)2 +
(
n(2n+ 1) + n

)2
=
(
n(2n+ 1) + n+ 1

)2
given by Stifel (1544) [8], or(

n(4n+ 4) + (4n+ 3)
)2

+ (4n+ 4)2 =
(
n(4n+ 4) + (4n+ 3) + 2

)2
given by Ozanam (1694) [6], which are based on one integer variable instead of two,
and generate some particular class, rather than all classes, of triples. Another famous
algorithm, which makes use of the Fibonacci series of numbers (denoted by F1, F2,
etc.), gives the triple (FnFn+3, 2Fn+1Fn+2, F2n+3), where n ≥ 1.

There may be other algorithms, too, based on some property of Pythagorean triples.
For instance, I can develop an algorithm from the property (c − a)(c − b) is twice the
square of an integer.

It may be noted that all these algorithms are concerned entirely with generation of
triples, and they employ some algebraic identity (in one or two variables) satisfying
the Pythagorean equation a2 + b2 = c2. None of them seeks to explore any possible
inter-relation of Pythagorean triples.

Algorithms: From one triple to other triples
Can we generate all the infinitude of triples from just one given triple?

In 1934, Berggren [2] proposed three linear transformations which, when applied
to a PPT, can produce three other PPTs. Later, Barning [1] and Hall [3] put these trans-
formations into matrix form. In 2008, Price [7] proposed an entirely new set of linear
transformations. In this way, parent-child relationships, in which one parent triple
produces three children, have been developed; see also Karama [4] for more general
matrix constructions. But while these linear transformations help in generating unique
(non-recurrent) PPTs only from a given PPT, they only produce triples which represent
right triangles of area greater than that of the original triple. Thus, (3, 4, 5) is the “origi-
nal” parent in the whole family of Pythagorean triples, and all the rest can be generated
if and only if we start from (3, 4, 5). Starting from (15, 8, 17), for instance, we can never
generate the triple (3, 4, 5) by these transformations. (See Section 8.1.) So, whether we
can generate all Pythagorean triples should depend on which triple we start from.

But can we not generate all triples, starting from any triple? Also, it may be asked:
Are these the only kind of relationships possible between Pythagorean triples?
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Composition and Decomposition
Much as we admire the elegent efficiency of these algorithms, we cannot but notice
that composition of Pythagorean triples has not been considered as a process, nor their
consequences studied.

In this discussion, my object is to apply composition on triples by utilizing a par-
ticular property of quadratic forms, and look at the consequences. By doing so, I shall
propose six Composition Laws by which any two Pythagorean triples, same or dis-
tinct, primitive or non-primitive, can be composed to generate six other triples. By
continuing this process interminably, all the infinitude of triples can be generated, re-
gardless of which triple one starts from. I shall also demonstrate that any Pythagorean
triple can be decomposed, or broken up, into six different pairs of triples according to
six Decomposition Laws, and consequently into infinitely many pairs of triples. I shall
also set up the matrix equation for both composition and decomposition.

Thus, beyond producing a powerful engine for generating all the infinitude of
Pythagorean triples by starting from any triple, the present study will reveal a new
vista of relationships between triples. It will be seen that under these relationships:

(i) the idea of an “original” parent in the family of Pythagorean triples is lost;

(ii) any two triples are bound in a reversible parent/child relationship; and

(iii) any triple can be seen as the result of a finite number of compositions as well as
of an infinitely long chain of composition of triples.

I have focussed on the composition and decomposition of PPTs, and into PPTs, only.
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1 Composition of Triples

I propose to represent Pythagorean triples as two kinds of matrices, named generating
matrices and composing matrices.

1.1 Generating Matrices

Consider any Pythagorean triple (a, b, c) (i.e., a2 + b2 = c2), and define the following
3× 3 generating matrices:

Gax =

a 0 0
0 c b
0 b c

 Gby =

c 0 a
0 b 0
a 0 c

 Gcz =

a −b 0
b a 0
0 0 c



Gbx =

b 0 0
0 c a
0 a c

 Gay =

c 0 b
0 a 0
b 0 c

 Gzc =

 a b 0
−b a 0
0 0 c


1.2 Composing Matrix and Triple Generation

Let t = (x, y, z) also be a Pythagorean triple (x2 + y2 = z2) and define the Composing
Matrix

V = V (t) =

x
y
z

 .

Then, it can be shown (in Section 1.4) that each of the generating matrices multiplied
by the composing matrix generates a new Pythagorean triple in the form of another
column vector. Thus, for instance,

GaxV =

a 0 0
0 c b
0 b c

x
y
z

 =

 ax
bz + cy
by + cz

 ,

where (ax)2+(bz+cy)2 = (by+cz)2, a Pythagorean triple. More generally, the following
matrix products all represent Pythagorean triples:

GaxV =

 ax
bz + cy
by + cz

 GbyV =

az + cx
by

ax+ cz

 GczV =

ax− by
ay + bx

cz



GbxV =

 bx
az + cy
ay + cz

 GayV =

bz + cx
ay

bx+ cz

 GzcV =

ax+ by
ay − bx

cz


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1.3 General matrix equation

Dropping the subscripts, the general matrix equation is GV = P , where P represents a
Pythagorean triple; or, GV = dP0, where scalar d = gcd(≥ 1) of the rows of P , and P0 a
Primitive Pythagorean Triple (PPT). In all numerical examples used in this discussion
the focus will lie primarily on PPTs.

1.4 Composition

Multiplication of the generating matrices with the composing matrix V represents com-
position of the triple (a, b, c) with the triple (x, y, z) in 6 different ways. Let the compo-
sitions corresponding to the matrix products GaxV , GbxV , etc. be named Compositions
Cax, Cbx, Cby, Cay, Ccz, Czc, respectively. The basis of the compositions is as follows.

Cax: Multiplying the equations a2 = c2 − b2 and x2 = z2 − y2 gives

a2x2 = (c2 − b2)(z2 − y2) = (c+ b)(z + y)(c− b)(z − y) = (by + cz)2 − (bz + cy)2 .

Therefore, (ax)2 + (bz + cy)2 = (by + cz)2; that is, (ax, bz + cy, by + cz) is also a
Pythagorean triple.

Using • as the symbol for composition, this is composing (a, b, c) • (x, y, z) in a
particular way, which I call Composition Cax.

Cbx: Exchange a and b in Cax, that is, compose (b, a, c) • (x, y, z) similarly as above.

Cby: Multiply b2 = c2 − a2 and y2 = z2 − x2, and proceed similarly as above.

Cay: Exchange b and a in Cby; that is, compose (b, a, c) • (x, y, z) similarly as in Cby.

Ccz: Multiplying the equations a2 + b2 = c2 and x2 + y2 = z2, and by complex factor-
ization on the left-hand side, I get,

(a+ ib)(a− ib)(x+ iy)(x− iy) = (cz)2 ;

or,
(a+ ib)(x+ iy)(a− ib)(x− iy) = (cz)2 .

Therefore, (ax − by)2 + (ay + bx)2 = (cz)2; that is, (ax − by, ay + bx, cz) is also a
Pythagorean triple. It does not matter if (ax − by) is negative, what matters in a
triple is the absolute value |ax− by|.

Czc: It arises from the identity (ax − by)2 + (ay + bx)2 = (ax + by)2 + (ay − bx)2.
So, (ax+ by, ay − bx, cz) is yet another Pythagorean triple.

1.5 The quadratic form

The main inspiration behind the compositions is that the quadratic form (p2 ±Nq2) is
closed under multiplication. As any Pythagorean equation contains a quadratic form
of this kind, it is this property that makes their solutions composable.
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1.6 Infinitely many triples

The fact that triples can be generated by composition implies that the Pythagorean
equation has infinitely many Diophantine solutions, that is, Pythagorean triples are
infinite in number, and can be generated by an endless process of composition. For
instance, let composing triple t with itself by any of the compositions generate triple t1.
Then compose t1 with t to get a triple t2; and t2 with itself to yield the triple t3. Applying
all the 6 compositions together will lead to even greater proliferation. Thus continuing
ad infinitum, infinitely many triples will be generated.

1.7 Recurrences

As the process of composition is continued, and all possible compositions are admitted,
and all non-primitive triples are reduced to PPTs, there will be recurrences of the same
triple, but that will happen only when certain conditions obtain and will never exhaust
the possibility of generating new triples. There will, in fact, be infinitely many new
triples and infinitely many recurrences (see Section 3).

1.8 Composition Laws

I therefore propose six Composition Laws as follows.
Any two Pythagorean triples (a, b, c) and (x, y, z), same or distinct, primitive or

non-primitive, can be composed in 6 different ways to generate the following 6 triples:

Cax : (ax, bz + cy, by + cz) Cby : (az + cx, by, ax+ cz) Ccz : (ax− by, ay + bx, cz)
Cbx : (bx, az + cy, ay + cz) Cay : (bz + cx, ay, bx+ cz) Czc : (ax+ by, ay − bx, cz)

By continuing the process of composition ad infinitum among the triples generated at
every stage, all the infinitude of Pythagorean triples will be generated. By dividing
each triple by the gcd (≥ 1) of its members, all the infinitude of Primitive Pythagorean
Triples (PPT) will be generated. These formulations can be easily transformed into
matrices as I have done in Sections 1.1 and 1.2.

1.9 Notation

Let composition be denoted generally as (a, b, c)• (x, y, z), and the specific composition
modes as Cax[(a, b, c) • (x, y, z)], Cbx[(a, b, c) • (x, y, z)], etc. The subscripts of G and C
are ax, bx, etc. because, as will be seen later, these product terms characterize and play
a vital role in each composition.
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2 Proliferation of triples

The Composition Laws can be used as a powerful engine for generating Pythagorean
triples. In the table below, I compose triples t1 and t2 to construct triples Pax, Pbx, Pby,
Pay, Pcz, Pzc and then reduce them to their corresponding PPTs P0 by dividing by their
respective gcds. It is PPTs only that are used in all compositions.

t1 t2 Pax
Pax

gcd Pbx
Pbx

gcd Pby
Pby

gcd Pay
Pay

gcd Pcz
Pcz

gcd Pzc
Pzc

gcd

15 45 675 3 360 360 1560 195 1189 1189 451 451 899 899
8 28 900 4 1271 1271 224 28 420 420 780 780 60 60
17 53 1125 5 1321 1321 1576 197 1261 1261 901 901 901 901

gcd 225 1 1 1 8 1 1 1 1 1 1 1
15 3 45 5 24 24 126 63 91 91 13 13 77 77
8 4 108 12 143 143 32 16 60 60 84 84 36 36
17 5 117 13 145 145 130 65 109 109 85 85 85 85

gcd 9 1 1 1 2 1 1 1 1 1 1 1
5 3 15 15 36 36 64 4 99 99 -33 -33 63 63
12 4 112 112 77 77 48 3 20 20 56 56 16 16
13 5 113 113 85 85 80 5 101 101 65 65 65 65

gcd 1 1 1 1 16 1 1 1 1 1 1 1
13 3 39 39 252 28 320 20 675 675 -297 -297 375 15
84 4 760 760 405 45 336 21 52 52 304 304 200 8
85 5 761 761 477 53 464 29 677 677 425 425 425 17

gcd 1 1 9 1 16 1 1 1 1 1 25 1
20 3 60 60 63 7 187 187 192 12 -24 -24 144 144
21 4 221 221 216 24 84 84 80 5 143 143 17 17
29 5 229 229 225 25 205 205 208 13 145 145 145 145

gcd 1 1 9 1 1 1 16 1 1 1 1 1
15 360 5400 24 2880 1440 25935 25935 16688 16688 -4768 -4768 15568 15568
8 1271 32175 143 41422 20711 10168 10168 19065 19065 21945 21945 16185 16185
17 1321 32625 145 41522 20761 27857 27857 25337 25337 22457 22457 22457 22457

gcd 225 1 2 1 1 1 1 1 1 1 1 1

Table 1: Composing t1 • t2 → P0

The table shows that, for instance,

Cax[(15, 8, 17) • (45, 28, 53)] = (675, 900, 1125)→ (3, 4, 5) ;

that is, (15, 8, 17) and (45, 28, 53) is composed (via Cax) to give (675, 900, 1125) which in
turn reduces to (3, 4, 5). I then use (3, 4, 5) to generate the triples (5, 12, 13), (7, 24, 25),
(13, 84, 85), (20, 21, 29) and many more from my compositions.

(i) Identical Recurrences. Note that compositions can recur:

Ccz[(15, 8, 17) • (3, 4, 5)] = (13, 84, 85)

Czc[(13, 84, 85) • (3, 4, 5)] = (375, 200, 475)→ (15, 8, 17) (the initial triple)
Cby[(15, 8, 17) • (3, 4, 5)] = (126, 32, 130)→ (63, 16, 65)

Cax[(15, 8, 17) • (3, 4, 5)] = (45, 108, 117)→ (5, 12, 13)

Czc[(5, 12, 13) • (3, 4, 5)]→ (63, 16, 65) (as also derived above)
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Also,

Cbx[(15, 8, 17) • Cax[(15, 8, 17) • (45, 28, 53)]] = Cbx[(15, 8, 17) • (3, 4, 5)] = (24, 143, 145)

Cax[(15, 8, 17) • Cbx[(15, 8, 17) • (45, 28, 53)]] = Cax[(15, 8, 17) • (360, 1271, 1321)]
→ (24, 143, 145) (as above) .

(See note on Commutative Pairs below.)

(ii) There are also recurrences with the order of first two terms reversed:

Cax[(15, 8, 17) • (45, 28, 53)]→ (3, 4, 5)

Cax[(15, 8, 17) • (3, 4, 5)]→ (5, 12, 13)

Cby[(5, 12, 13) • (3, 4, 5)] = (64, 48, 80)→ (4, 3, 5) .

Thus, we have (3, 4, 5) and (4, 3, 5). Similarly, there are (5, 12, 13) and (12, 5, 13), and
(45, 28, 53) and (28, 45, 53).

3 Properties of Composition

It has been seen in Table 1 that there are recurrences among the triples. This leads to the
question: Will recurrences eventually exhaust the generation of new triples? The dis-
cussion on the properties of composition, apart from the academic interest involved,
is motivated mainly by this question. In view of the kind of relationships that is be-
ing sought, it is important that the inexhaustibility of the triple generation process is
established. Most of the examples for reference are taken from Table 1.

1. PPTs and non-PPTs. Both PPTs and non-PPTs are generated by the compositions. As
PPTs are more fundamental, the non-PPTs have all been reduced to their correspond-
ing PPTs in this study. In terms of matrices, this amounts to scalar multiplication as
indicated in the matrix equation GV = dP0 (see Section 1.3).

2. b = c − 1 and b < c − 1. PPTs are of two kinds, one in which the even member b
equals c−1 and the other in which b < c−1. Both kinds are generated by composition.

3. Trivial triple. For t = (a, b, c), the composition Gzc(t)V (t) is the triple (c2, 0, c2) which
reduces to (1, 0, 1), a “trivial” triple. It will be subsequently ignored.

4. Commutativity.
(i) Reversal of composition sequence. For t1 = (a, b, c) and t2 = (x, y, z),

Cax(t1 • t2) = Cax(t2 • t1) ;
Cby(t1 • t2) = Cby(t2 • t1) ;
Ccz(t1 • t2) = Ccz(t2 • t1) ;

that is, the compositions Cax, Cby, Ccz are commutative under reversal of sequence.
Czc is also commutative if negative signs are ignored in the results.
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However, Cbx(t1 • t2) = Cay(t2 • t1) (with first two terms reversed); that is, Cbx and
Cay are swapped under reversal of sequence. Thus, under a particular sequence of
compositions and its reverse we remain within the same set of results.

(ii) Commutative pairs. Note that the following matrix products are commutative,

GaxGbx = GbxGax ;

GbyGay = GayGby ;

GczGzc = GzcGcz .

This implies that

Cax[t1 •
{
Cbx(t1 • t2)

}
] = Cbx[t1 •

{
Cax(t1 • t2)

}
] ;

that is, the compositions (Cax, Cbx) form a kind of commutative pair. For instance,
consider the recurrence of triple (24, 143, 145) in Table 1; see Identical Recurrences in
Section 2 above. Similarly, the compositions (Cby, Cay) and (Ccz, Czc) also form commu-
tative pairs.

5. Chain of compositions: Associativity. By definition,

Cax[(Cax(t1 • t2)) • (Cax(t3 • t4))] = Cax[Cax(Cax(t1 • t2)) • t3)] • t4] ;

that is, a chain of compositions under Cax is associative. Similarly, compositions under
Cby, Ccz are also associative. Compositions under Cbx, Cay, Czc are non-associative.

6. Reversal of order: first two terms. Table 1 contained recurrences of triples with the
order of the first two terms reversed; such as, (3, 4, 5), (4, 3, 5), or (5, 12, 13), (12, 5, 13).
What happens if these “reversed” triples are used in subsequent compositions?

By the definitions, it can be seen that, when the order of the first two terms are
reversed, pairs of compositions exchange results as follows:

(i) Comparing (a, b, c) • (x, y, z) and (b, a, c) • (x, y, z):
Compositions (Cax, Cbx) exchange results, and so do (Cby, Cay). Meanwhile, (Ccz, Czc)
exchange results if negative signs are ignored and the first two terms are reversed.

(ii) Comparing (a, b, c) • (x, y, z) and (a, b, c) • (y, x, z):
Compositions (Cax, Cay) exchange results (with their first two terms reversed); so do
(Cbx, Cby), and (Ccz, Czc) also exchange results with first two terms reversed.

(iii) Comparing (a, b, c) • (x, y, z) and (b, a, c) • (y, x, z):
Compositions (Cby, Cax) exchange results (with their first two terms reversed), as do
(Cbx, Cay) (with first two terms reversed). However, (Ccz, Czc) remain unchanged (with
negative signs ignored) under reversal.

Thus again, notwithstanding negative values and reversed order of first two terms,
we remain effectively within the same set of results as in compositions (a, b, c)•(x, y, z).
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7. Negative values. Keeping or ignoring negative signs produces quite different con-
sequences. For instance, Cax[(4081,−1560, 4369) • (15, 8, 17)] gives (61215, 8432, 61793),
but Cax[(4081, 1560, 4369) • (15, 8, 17)] gives (61215, 61472, 86753). So, strictly speaking,
retaining the negative signs ought to be a more authentic process.

8. Non-PPTs: the conditions. Table 1 shows that non-PPTs are generated, which can
be reduced to PPTs. For example, Cby[(15, 8, 17)•(3, 4, 5)] = (126, 32, 130)→ (63, 16, 65).
The same PPT can be generated directly from some other composition, and that con-
tributes to recurrences of triples; for example, Czc[(5, 12, 13) • (3, 4, 5)] = (63, 16, 65).

It can be seen that in each of the triples generated by composition there is a product
term

{
ax, bx, by, ay, cz

}
, and the other two terms are sums/differences of products, like

(bz+ cy), (ax− by). It will be shown here that non-PPTs are generated only when there
is a common divisor d > 1 between the two factors of the product term; for example,
the term ax may have d > 1, where d| gcd(a, x). This is the essential, but not the only,
condition; certain other conditions are to be satisfied in order to generate a non-PPT.

In the discussion below I shall look into these other conditions. Consider the PPTs
(a, b, c) and (x, y, z) where b and y are even.

Composition Cax: Here, Cax[(a, b, c) • (x, y, z)] = (ax, bz + cy, by + cz). Let d > 1 be
a common divisor of a and x, not necessarily gcd(a, x). Then ax is divisible by d2.
Set a = dma0 and x = dnx0, where gcd(dm, a0) = gcd(dn, x0) = 1. Then either

(i)
b =

1

2
(d2m2 − a0

2) y =
1

2
(x0

2 − n2d2)

c =
1

2
(d2m2 + a0

2) z =
1

2
(x0

2 + n2d2)
or

(ii)
b =

1

2
(d2m2 − a0

2) y =
1

2
(n2d2 − x0

2)

c =
1

2
(d2m2 + a0

2) z =
1

2
(n2d2 + x0

2) .

For (i), ax = d2mna0x0 and

bz + cy =
1

2
d2(m2x0

2 − n2a0
2)

by + cz =
1

2
d2(m2x0

2 + n2a0
2) .

As a and x are both odd, d,m, n, a0, x0 are odd, so m2x2
0 − n2a20 = 2p is even.

So in the composed triple, gcd(d2mna0x0, d
2p, d2(p+ n2a20) ≥ d2.

For (ii), ax = d2mna0x0 and

bz + cy =
1

2
(d4m2n2 − a20x

2
0)

by + cz =
1

2
(d4m2n2 + a20x

2
0) .
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Let q = gcd
(
d2mna0x0,

1
2
(d4m2n2 − a20x

2
0),

1
2
(d4m2n2 + a20x

2
0)
)
. Then

2q
∣∣((d4m2n2 − a20x

2
0)± (d4m2n2 + a20x

2
0)
)
,

so q|(dm)2(dn)2 and q|(a20x2
0).

But gcd(dm, a0) = gcd(dn, x0) = 1, so gcd
(
(dm)2(dn)2, a20x

2
0

)
= 1; that is, q = 1.

Therefore, for (ii), the triple (ax, bz + cy, by + cz) is a PPT.

Therefore, the necessary condition for a non-PPT to arise from Cax is
that d > 1, dm > a0, and x0 > dn;
if these conditions are not met, then the triple in question is a PPT.

For instance, Cax[(15, 8, 17) • (45, 28, 53)] = (675, 900, 1125) is a non-PPT with

gcd(675, 900, 1125) = 152 = 3252

and d = 5 (see Table 1). Similarly, Cax[(3, 4, 5)• (21, 220, 221)] = (63, 1984, 1985) is a PPT;
while Cax[(3, 4, 5) • (21, 20, 29)] = (63, 216, 225) is a non-PPT with gcd(63, 216, 225) = 32.

Composition Cbx: Now consider Cbx[(a, b, c) • (x, y, z)] = (bx, az + cy, ay + cz).
Let b = dmb0 and x = dnx0 with b even and x odd; then d, n, and x0 must be odd, and
gcd(dn, x0) = 1. Then either

(i)
a = b20 −

(md

2

)2
y =

1

2
(d2n2 − x0

2)

c = b20 +
(md

2

)2
z =

1

2
(d2n2 + x0

2)
or

(ii)
a = b20 −

(md

2

)2
y =

1

2
(x2

0 − d2n2)

c = b20 +
(md

2

)2
z =

1

2
(x2

0 + d2n2) .

So, in both cases md is even and, since d is odd, m must be even.

For (i), if b0 > md
2

, dn > x0 and m is even, then

(bx, az + cy, ay + cz) =
(
d2mnb0x0,

1

4
d2(4b20n

2 −m2x2
0),

1

4
d2(4b20n

2 +m2x2
0)
)
.

So, the greatest common divisor of the resultant triple is equal to at least d2. Thus,
Cbx[(11, 60, 61) • (15, 8, 17)] = (900, 675, 1125), a non-PPT with

gcd(900, 675, 1125) = 152 .

Here d = 5, but the greatest common divisor of the resultant triple is 3252.
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For (ii), bx = d2mnb0x0 and

az + cy =
(d2mn

2

)2
− (b0x0)

2

ay + cz =
(d2mn

2

)2
+ (b0x0)

2 .

As d, n, and x0 are odd, b0 is odd as well, and 4|m because az + cy and ay + cz are both
odd. Also, as b0, x0 are odd, b0x0 is odd too. Let

q = gcd(d2mnb0x0,
(d2mn

2

)2
− (b0x0)

2,
(d2mn

2

)2
+ (b0x0)

2) .

Then

q
∣∣((d2mn

2
)2 − (b0x0)

2
)
±
(
(
d2mn

2
)2 + (b0x0)

2
)
;

therefore, q|(d2mn)2, and so q|2(d2mn)2; also, q|2(b0x0)
2. However, gcd(dm, b0) = 1 and

gcd(dn, a0) = 1, so gcd(d2mn, b0x0) = 1. Therefore, q|2(d2mn)2 and q|2(b0x0)
2 imply that

q = 1 or 2. This is a contradiction because the greatest common divisor q divides the
odd terms az + cy and ay + cz, and therefore cannot be 2. So, q = 1. Thus,

Cbx[(5, 12, 13) • (3, 4, 5)] = (36, 77, 85) ,

a PPT.

Thus, the necessary condition for a non-PPT to arise from Cbx is that
d > 1, b0 > md

2
, dn > x0, and that m is even;

if these conditions are not satisfied, then the greatest common divisor is 1.

Composition Cay:
The case for Cay[(a, b, c) • (x, y, z)] = (bz + cx, ay, bx+ cz) is similar to that of Cbx.

Composition Cby: In Cby[(a, b, c)• (x, y, z)] = (az+ cx, by, ax+ cz) the terms are all even;
so, 2 is always a common divisor. Let b = dmb0 and y = dny0. Here, if

a = b20 −
(md

2

)2
x = (nd)2 −

(y0
2

)2
c = b20 +

(md

2

)2
z = (nd)2 +

(y0
2

)2
then by = d2mnb0y0 and

az + cx =
1

8
d2(16n2b20 −m2y20

ax+ cz =
1

8
d2(16n2b20 +m2y20) .

So, gcd(az + cx, by, ax+ cz) = 2p, where p > 1.

12



Here, the greatest common divisor of the resultant triple is usually 2;
and, if the greatest common divisor is greater than 2, then the necessary
conditions are that
md and y0 are even, and b0 >

md
2

and nd > y0
2

.

So, gcd(az + cx, by, ax+ cz) ≥ 2. Thus,

Cby[(7, 24, 25) • (35, 12, 37)] = (1134, 288, 1170) (gcd = 18)

Cby[(5, 12, 13) • (7, 24, 25)] = (216, 288, 360) (gcd = 72)

but
Cby[(5, 12, 13) • (9, 40, 41)] = (322, 480, 578) (gcd = 2) .

Compositions Ccz and Czc: If gcd(c, z) = d for PPTs (a, b, c) and (x, y, z), then Ccz gives
(ax− by, ay+ bx, d2c0z0) and Czc gives (ax+ by, ay− bx, d2c0z0) where gcd(d, c0, z0) = 1.
As gcd(a, b, c) = 1 and gcd(x, y, z) = 1, in either case the greatest common divisor of
the resultant triple can be d2. If the greatest common divisor is d2 > 1 for Ccz, then the
greatest common divisor for Czc is 1; and vice versa.

So, a non-PPT with greatest common divisor d2 will be generated by
either Ccz or Czc but never both.

Thus, for (5, 12, 13) • (33, 56, 65), Ccz generates (−507, 676, 845) with greatest com-
mon divisor 132; and Czc generates (837, 116, 845), a PPT. But for (5, 12, 13)• (63, 16, 65),
Ccz generates (123, 836, 845), a PPT; while Czc gives (507, 676, 845) which has greatest
common divisor 132.

However, there can be the very special case of PPTs (a, b, c) and (x, y, c), the third
terms being equal, as in (33, 56, 65) and (63, 16, 65). The third term in both Ccz and Czc

is c2. Obviously, the greatest common divisor of any of the resultant triples cannot
be c2. Let c = mn where gcd(m,n) = 1. Therefore, if gcd(ax − by, ay + bx,m2n2) = m2,
then gcd(ax+ by, ay − bx,m2n2) = n2.

Thus, Ccz[63, 16, 65) • (33, 56, 65)] = (1183, 4056, 4225) with

gcd(1183, 4056, 4225) = 132 ;

whereas Czc[63, 16, 65) • (33, 56, 65)] = (2975, 4000, 4225) with

gcd(2975, 4000, 4225) = 52 .

The other special case Czc[(a, b, c) • (a, b, c)] = (c2, 0, c2) → (1, 0, 1) has been discussed
above in Trivial triples (Property 3).
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9. General expression for the greatest common divisor. In the item above, I have stud-
ied only the conditions when the resultant triple has greatest common divisor greater
than 1. In general, as will be shown below in Section 6 on decomposition, if (a, b, c)
and (x, y, z) are both PPTs, then for any composition (a, b, c) • (x, y, z)→ (p, q, r) that is
a PPT, we have that the greatest common divisor equals

a2

kax
(for Cax)

b2

kby
(for Cby)

c2

kcz
(for Ccz)

b2

kbx
(for Cbx)

a2

kay
(for Cay)

c2

kzc
(for Czc)

where each of kax, kbx, kay, kby, kcz, and kzc is any positive divisor of the numerator.

10. Recurrence of triples. The foregoing discussion shows that in a process of compo-
sition recurrence of triples will be caused by:

(i) Reversal of the order of the first two terms (Property 6);

(ii) Commutativity, wherever it exists (Property 4);

(iii) Associativity, wherever it exists (Property 5);

(iv) Most importantly, when non-PPTs are reduced to PPTs: that is, when the same
PPT is generated at different stages in the composition process by composing
different triples (Property 8).

Note that (ii) and (iii) can happen only when all possible sequences of compositions
are tried during the process.

4 Infinitely many triples and infinitely many recurrences

Let us imagine a continuous composition process in which all possible sequences of
composition are admitted, and all non-PPTs are reduced to PPTs; in other words, a
process in which all factors that are likely to cause recurrences are operative. As the
number of compositions increases, the number of recurrences is also likely to increase.
The big question is: Will there be a point of ‘saturation’ when triples are merely re-
peated and no new ones are generated?

But we have seen that recurrences occur only when very specific conditions are met.
So, at every composition there will be as much possibility of a new triple generation
as of the recurrence of an old one. Therefore, the point of ‘saturation’ will never come
to be, because while infinitely many new triples will be generated, there will also be
infinitely many recurrences, and this will be a never-ending process.

What will happen is that:
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(1) Over a finite range of compositions the number of recurrences of triples will vary
according to the compositions chosen (that is, the effects of commutativity, etc.
can be minimized by suitable choice of compositions)

(2) Over an infinite range of compositions, while infinitely many new triples will be
generated, there will also be infinitely many recurrences; but that being a never-
ending process, no point of ‘saturation’ when new triples cease to be generated
will ever be reached.

It may be noted that the claim “infinitely many triples and infinitely many recur-
rences”, which is rather intuitively explained at this juncture, will be firmly established
at the end of the section on Decomposition.

5 What compositions reveal

It has been seen that any two Pythagorean triples can generate 6 other triples by com-
position. This implies the existence of a parent/child relationship between triples:
every pair of triples produces 6 children.

On the other hand, in a never-ending process of compositions, every PPT is gen-
erated infinitely many times. Therefore, any PPT can be produced from infinitely
many pairs of parents. This implies that the parent/child relationship between any
two triples is reversible; that is, any PPT can produce any other if it pairs with the
appropriate PPT by composition.

This also raises the question: Which triples does a given triple originate from? Or
conversely, which triples can a given triple be decomposed into?

The implications of composition will be better revealed and this question will be
dealt with in the discussion on decomposition, below in the following Section 6.
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6 Decomposition of triples

My object is to find which triples can be composed to generate a given primitive triple

P0 =

p
q
r

 ,

that is, which triples can P0 be factorised, or decomposed, into. To do this, we might
first consider a PPT (a, b, c) and solve the matrix equation GaxV = P0 where

Gax =

a 0 0
0 c b
0 b c

 and V =

x
y
z


to get

V =

x
y
z

 =
1

a2

 ap
cq − br
cr − bq

 .

That is, a 0 0
0 c b
0 b c

 ap
cq − br
cr − bq

 = a2

p
q
r

 .

Now, (ap)2+(cq−br)2 = (cr−bq)2, by substituting p2+q2 = r2 and a2+b2 = c2 suitably.
Therefore, whatever be the chosen PPT (a, b, c), the column vector ap

cq − br
cr − bq


also represents a Pythagorean triple. This implies that the matrix P representing a
Pythagorean triple can be factorised into a 3 × 3 and 3 × 1 matrix (multiplied by a
scalar) in infinite ways, where both the factors represent Pythagorean triples; that is,
any Pythagorean triple can be decomposed into infinitely many pairs of Pythagorean
triples.

The solution, however, needs a bit of generalising, as follows:

V =

x
y
z

 =
1

a2

 ap
cq − br
cr − bq

 =
k

a2
V0 ,

where k = gcd(ap, cq − br, cr − bq) ≥ 1, and V0 represents the PPT corresponding to V .
Using the proper subscripts, the equation can be re-written as GaxV0(ax) =

a2

kax
P0.

16



6.1 Matrix equations

Similar to the above, I can formulate for all the compositions as the following Matrix
Equations.

Cax: GaxV0(ax) =
a2

kax
P0 where V0(ax) =

1
kax

 ap
cq − br
cr − bq

 and kax = gcd(ap, cq−br, cr−bq);

Cbx: GbxV0(bx) =
b2

kbx
P0 where V0(bx) =

1
kbx

 bp
cq − ar
cr − aq

 and kbx = gcd(bp, cq−ar, cr−aq);

Cby: GbyV0(by) =
b2

kby
P0 where V0(by) =

1
kby

cp− ar
bq

cr − ap

 and kby = gcd(cp−ar, bq, cr−ap);

Cay: GayV0(ay) =
a2

kay
P0 where V0(ay) =

1
kay

cp− br
aq

cr − bp

 and kay = gcd(cp−br, aq, cr−bp);

Ccz: GczV0(cz) =
c2

kcz
P0 where V0(cz) =

1
kcz

ap+ bq
aq − bp

cr

 and kcz = gcd(ap+ bq, aq− bp, cr);

Czc: GzcV0(zc) =
c2

kzc
P0 where V0(zc) =

1
kzc

ap− bq
aq + bp

cr

 and kzc = gcd(ap− bq, aq+ bp, cr).

6.2 Decomposition Laws

I can now set out the preceding formulations in the form of Decomposition Laws.

If (p, q, r) is a PPT, then it can be decomposed into a given PPT (a, b, c) and six other
triples

{
tax, tbx, tby, tay, tcz, tzc

}
in six different ways. That is, the PPT (p, q, r) can be

generated by composing the PPT (a, b, c) with the triples tax, tbx, tby, tay, tcz, tzc according
to our six compositions Cax, Cbx, Cby, Cay, Ccz, Czc respectively.

Given a PPT (a, b, c), any PPT (p, q, r) shall equal (can be decomposed as):

1
a2
.Cax[(a, b, c) • tax], where tax = [ap, (cq − br), (cr − bq)];

1
b2
.Cbx[(a, b, c) • tbx], where tbx = [bp, (cq − ar), (cr − aq)];

1
b2
.Cby[(a, b, c) • tby], where tby = [(cp− ar), bq, (cr − ap)];

1
a2
.Cay[(a, b, c) • tay], where tay = [(cp− br), aq, (cr − bp)];

1
c2
.Ccz[(a, b, c) • tcz], where tcz = [(ap+ bq), (aq − bp), cr];

1
c2
.Czc[(a, b, c) • tzc], where tzc = [(ap− bq), (aq + bp), cr].
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Now we can replace (a, b, c) with tax and find which triples composed with tax will
generate (p, q, r). Continuing this process ad infinitum we find that infinitely many
pairs of triples can generate (p, q, r); that is, (p, q, r) can be decomposed into pairs of
triples in infinitely many ways.

6.3 “Amicable” triples

As (a, b, c) = T when composed with each of tax, . . . , tzc individually generates the
same triple (p, q, r), each of the pairs (T, tax), (T, tbx), (T, tby), (T, tay), (T, tcz), (T, tzc) can
be named Amicable Triples for generating (p, q, r). Every triple has six amicable pairs
for generating any particular triple.

There are infinitely many amicable pairs of triples for generating any given triple.

6.4 Decomposing the PPT (15, 8, 17)

In Table 1, I started with (15, 8, 17) as one of the generating triples and got (3, 4, 5) as my
first result. In Table 2 below, by applying the decomposition formulas I have a glimpse
of which pairs of PPTs can (15, 8, 17) be decomposed into. In the first row I take (3, 4, 5)
as the generating triple and find its amicable triples for producing (15, 8, 17).

G Vax
Vax

gcd
Vbx

Vbx

gcd
Vby

Vby

gcd
Vay

Vay

gcd
Vcz

Vcz

gcd
Vzc

Vzc

gcd

3 45 45 60 60 24 3 7 7 77 77 13 13
4 -28 -28 -11 -11 32 4 24 24 -36 -36 84 84
5 53 53 61 61 40 5 25 25 85 85 85 85
gcd 1 1 1 1 8 1 1 1 1 1 1 1
45 675 3 -420 -420 30 15 1271 1271 451 451 899 899
-28 900 4 -341 -341 -224 -112 360 360 780 780 -60 -60
53 1125 5 541 541 226 113 1321 1321 901 901 901 901
gcd 225 1 1 1 2 1 1 1 1 1 1 1

Table 2: Decomposing (15, 8, 17) into (3, 4, 5) and another triple, and into (45,−28, 53)
and another; finding Amicable Triples of triple (3, 4, 5) and again of (45,−28, 53) for
generating (15, 8, 17).

It is found that, if t1 = (3, 4, 5), then

(15, 8, 17)← Cax[t1 • (45,−28, 53)]
← Cbx[t1 • (60,−11, 61)]
← Cby[t1 • (3, 4, 5)]
← Cay[t1 • (7, 24, 25)]
← Ccz[t1 • (77,−36, 85)]
← Czc[t1 • (13, 84, 85)] .

And similarly for t1 = (45,−28, 53).
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6.5 Infinitely long chain of compositions

Consider triple T = Cax(t1 • t2) and let t1 = Cbx(t3 • t4) and t2 = Cby(t5 • t6). Then

T = Cax[Cbx(t3 • t4) • Cby(t5 • t6)]
= Cax[Cbx(t3 • t4) • Cby[t5 • Cay(t7 • t8)

]
]

where t6 = Cay(t7 • t8), and so on. Thus, the chain of compositions generating T can go
on increasing. As each of the component triples can be decomposed in infinitely many
ways, the chain can be infinitely long.

6.6 Properties of Decomposition

Properties of decomposition are similar to those of composition. For instance, given
the commutative nature of the compositions Cax, Cby, Ccz, we will have

Cax[(a, b, c) • (ap, cq − br, cr − bq)] = Cax[(ap, cq − br, cr − bq) • (a, b, c)] ,

and similarly for Cby, Ccz.

7 Infinitely many triples and infinitely many recurrences:
Reviewed

Having studied decomposition, I can now look at the assertion “infinitely many triples
and infinitely many recurrences” again.

It has been seen that every primitive triple can be decomposed into infinitely many
distinct pairs of primitive triples. Each of these offspring or component PPTs can also
be decomposed into infinitely many distinct pairs of PPTs. Therefore, in a process of
infinitely many compositions every PPT will have infinitely many recurrences as the
results of infinitely many compositions. As our proposed process starts with only two
PPTs, same or distinct, and goes on composing the newly generated triples among
themselves, the infinitely many distinct pairs of PPTs that can generate one particu-
lar PPT should all come from the triple generation process. So, unless infinitely many
distinct triples are generated, there cannot be infinitely many recurrences of the same
triple. But decomposition has shown that there will indeed be infinitely many recur-
rences of every triple. Therefore, in an endless process there will be infinitely many
new and distinct triples and infinitely many recurrences.
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8 Relationships between triples

8.1 The linear transformations of Berggren and Price

If (a, b, c) is a PPT, where a is odd and b even, the following are the transformations
proposed by Berggren [2] and Price [7] independently.

Berggren: The PPTs (a1, b1, c1), (a2, b2, c2), and (a3, b3, c3) are produced from (a, b, c) by
the following transformations proposed by Berggren:

a1 = −a+ 2b+ 2c b1 = −2a+ b+ 2c c1 = −2a+ 2b+ 3c
a2 = +a+ 2b+ 2c b2 = +2a+ b+ 2c c2 = +2a+ 2b+ 3c
a3 = +a− 2b+ 2c b3 = +2a− b+ 2c c3 = +2a− 2b+ 3c .

Price: The PPTs (a1, b1, c1), (a2, b2, c2), and (a3, b3, c3) are produced from (a, b, c) by the
following transformations proposed by Price:

a1 = +2a+ b− c b1 = −2a+ 2b+ 2c c1 = −2a+ b+ 3c
a2 = +2a+ b+ c b2 = +2a− 2b+ 2c c2 = +2a− b+ 3c
a3 = +2a− b+ c b3 = +2a+ 2b+ 2c c3 = +2a+ b+ 3c .

Parent Child Bn1 Child Bn2 Child Bn3 Child Pr1 Child Pr2 Child Pr3
5 45 55 7 9 35 11

12 28 48 24 40 12 60
13 53 73 25 41 37 61

Parent Child Bn1 Child Bn2 Child Bn3 Child Pr1 Child Pr2 Child Pr3
7 91 105 9 13 63 15

24 60 88 40 84 16 112
25 109 137 41 85 65 113

Table 3: Generating triples first from Parent (3, 4, 5), then from (7, 24, 25), by linear
transformations: Symbol Bn→ Berggren, Pr → Price

In Table 3 above, child triples are being produced by applying the Berggren and
Price transformations first on the parent (5, 12, 13), and then on the parent (7, 24, 25).

Firstly, it can be seen that by both set of transformations triples representing bigger
triangular areas are produced from a given triple, not the other way round. Secondly,
I would like to look at the consequences if I try to find out the parent of a given triple.

Berggren’s second transformation matrix and its inverse are

TBn2 =

1 2 2
2 1 2
2 2 3

 and T−1
Bn2 =

 1 2 −2
2 1 −2
−2 −2 3

 .

With this inverse matrix, I can find out the parent (7, 24, 25) from the child (105, 88, 137),
and the parent (5, 12, 13) from the child (55, 48, 73).

It may be noted that the parent-child is always a unique and irreversible pair.
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Thus going backwards, I have

T−1
Bn2

3
4
5

 =

1
0
1


which represents a “trivial” triple.

This shows that Berggren’s transformations are based on (3, 4, 5) as the “original”
parent in the family of Pythagorean triples. This also implies that any triple can be
decomposed as a finite chain of linear transformations starting from (3, 4, 5), unlike
our infinitely long chain of compositions.

Similarly, let us take Price’s first transformation matrix and its inverse

TPr1 =

 2 1 −1
−2 2 2
−2 1 3

 and T−1
Pr1 =

1

4

2 −2 2
1 2 −1
1 −2 3


by which, as in the case of Berggren transformations, we can establish unique pairs of
parent-child relations.

Going backwards to (3, 4, 5), I have

T−1
Pr1

3
4
5

 =
1

2

4
3
5


so the parent of triple (3, 4, 5), according to the Price transformation, is the non-PPT
(8, 6, 10). The PPT equivalent to (8, 6, 10) is (4, 3, 5). But as the transformations are
based on a being odd and b being even, this result with a = 4, b = 3 violates the
primary condition of the formulation. This shows that Price’s transformation cannot
produce a parent of (3, 4, 5) in a way that agrees with the condition of the formulations.
It also implies, as in the case of Berggren, that any triple can be decomposed only as a
finite chain of linear transformations, starting from (3, 4, 5).
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8.2 New relationships revealed by Composition and Decomposition

Compared with the invariable/irreversible parent-child relationships established by
the linear transformations of Berggren and Price, the processes of Composition and
Decomposition reveal a completely new kind of relationships between Pythagorean
triples.

In Table 1, we saw that the triple (15, 8, 17) is a parent of (3, 4, 5). In Table 2, we see
that (3, 4, 5) in its turn can also be the parent of (15, 8, 17) if (3, 4, 5) is composed with
its amicable pairs.

The phenomenon of infinitely many recurrences (discussed in Section 4) implies
that any PPT can be generated through infinitely many different compositions. The
topic of Decomposition very clearly shows that any PPT can generate any other if it
finds its suitable amicable pair, which are 6 in number. Therefore, any PPT can be
either the parent or child of any other; that is, all PPTs are mutually linked in reversible
parent/child relationships.

Moreover, any triple can be expressed or broken up as a finite as well as an infinitely
long chain of compositions.

Conclusion

With the help of six Composition Laws any two Pythagorean triples can be composed
in six different ways to generate six other triples, which can be reduced to primitive
triples according to matrix equations by which such compositions can be represented.
Composing ad infinitum within this ever-increasing set of triples, all the infinitude
of distinct primitive triples can be generated including infinitely many recurrences
thereof. Though this implies that any primitive triple can be generated by infinitely
many different compositions of triples, nevertheless six Decomposition Laws, includ-
ing matrix equations, can be set up to find the triples with which any triple can be com-
posed to generate a given triple. So any triple can be expressed as a finite as well as an
infinitely long chain of compositions. Composition/Decomposition therefore reveals
that any triple can generate any other if it finds its appropriate pair for composition.
Thus no triple can be called more “original” than another in the family of Pythagorean
triples; and all triples are interlinked in reversible parent/child relationships.

Acknowledgements

I am grateful to Dr Thomas Britz, UNSW Sydney, for reading over the draft and offer-
ing invaluable guidance.

22



References

[1] F.J.M. Barning, Over pythagorese en bijna - pythagorese driehoeken en een gener-
atieproces met behulp van unimodulaire matrices, Math. Centrum Amsterdam Afd.
Zuivere Wisk. ZW-001:37 (1963).

[2] B. Berggren, Pytagoreiska trianglar, Tidskrift för Elementär Matematik, Fysik och
Kemi 17 (1934), 129–139.

[3] A. Hall, Genealogy of Pythagorean triads, Math. Gazette 54 (1970), 377-379.

[4] M.J. Karama, Generalizations of B. Berggren and Price matrices, Palestine Journal
of Mathematics 6 (2017), 528–532.

[5] E. Maor, The Pythagorean Theorem: a 4000-Year History, Princeton University
Press, Princeton, NJ, 2007.
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