Parabola Volume 55, Issue 3 (2019)

How not to play Connect Four:

an introduction to Dynamic Programming

Trevor Chi-Yuen Tao!

1 Introduction

Dynamic Programming (DP) is a well-known optimization method for solving com-
putational problems, such as the number of paths between two nodes or the edit dis-
tance between strings [2]. According to Wikipedia, DP attempts to simplify a complex
problem by breaking it down into subproblems and then recursively solving these sub-
problems. However, this notion is rather vague. The essential idea behind Dynamic
Programming is that we have a number of states in a graph or table. For each state
we compute a desired quantity, such as the number of paths from A to B or the cost
of the cheapest path. The quantity need only be computed once and the results can be
used as many times as necessary to facilitate a similar computation for “future” states.
When all quantities are computed, the final state will have the correct answer to our
computational problem. If done correctly, we can compute the desired output much
more efficiently than a brute force algorithm.

A simple example of dynamic programming is to compute Fibonacci numbers, defined
by F(n) = F(n—1)+F(n—2) and F(1) = F'(2) = 1. If we blindly applied the definition
of, say, F'(20) then we get lots of repeated calls for F'(19), F(18), . ... But if we compute
from the “bottom up”, starting with F(1), F(2) etc., then we only compute each F(n)
once which is much more efficient. Another example would be counting paths on a
graph from A to B [4]. Again, we need only compute a single value for each node,
starting from the bottom up.

'Trevor Tao has a PhD in applied mathematics. He is a research scientist currently working for the
Australian Department of Defence. Trevor is a keen chess and scrabble player and his other hobbies
include mathematics and music. Trevor is the brother of world-renowned mathematician Terence Tao.



2 Connect Four

Connect Four is a well-known two-player game by Milton Bradley. The objective is
to line up four pieces of your colour horizontally vertically or diagonally before your
opponent does. The game is solved, and is proven to be a win for the first player [1].
The decision is very close: The first player must start in the middle column to avoid
a draw (or even a loss). Moreover, she requires all 21 discs of her colour to achieve
victory if her opponent puts up maximum resistance.

The analysis of expert-level play in [1] is extremely tedious, so instead we consider a
slightly different version of Connect Four where each of the seven columns is assigned
one of the days of the week and individual cells have numbers between 1 and 31.
Cells without numbers are not used and are only included to make the board resemble
the standard version of Connect Four with six rows and seven columns. Each day
represents a Bernoulli trial with a red or yellow disc indicating one of two possible
outcomes. Discs are always placed in order, starting with the cell numbered 1 and
counting upwards. For instance Trevor can play one game of four-suit Spider Solitaire
per day and record the result (win or loss). Four yellow discs in a row wins the game
for Trevor, or four reds is a win for Spider Solitaire. If neither side achieves connect
4 before the end of the month the game is a draw. A possible game state is shown in
Figure 1. After a balanced start in the first week, Trevor has gained the upper hand
and only needs a win on 12th of September to achieve Connect Four. If Trevor cannot
obtain Connect Four on the 12th, then the game will last at least seven more days since
the earliest possible decision can occur with either side declaring Connect Four on the
third week (15-16-17-18). Of course, if the third week is still not enough for either side
to achieve victory, then the endgame becomes much more exciting since diagonal and
vertical threats of Connect Four suddenly come into play!

The revised version of this game is much easier to analyse since we don’t have to deal
with arcane concepts such as which player controls the Zugzwang in a given game
state [1]. We will give it the rather unimaginative name “How Not to Play Connect
Four” (HNTPC4). We wish to investigate the following question: How many ways
can HNTPC4 end in a draw? Obviously this means filling up the whole board without
either side declaring Connect Four.

3 Analysis of HNTPC4

By changing the rules of the game, the set of possible game states changes drastically.
In the traditional version of Connect Four, the discs must be “balanced”, in the sense
that the number of yellow and red discs must be equal or differ by 1, depending on
whose move it is. Furthermore if a cell c is empty, then all cells above ¢ must also be
empty. In HNTPC4, (i) the number of red and yellow discs need not be balanced but
(i) if a cell is empty then all cells to the right as well as above must also be empty.



CONNECT FOUR September 2019: Trevor O vs Spider Solitaire .

41311333

=

=)

Figure 1: How Not To Play Connect Four

For instance, cell 22 cannot contain a red or yellow disc unless all cells below 22 also
contain discs of either colour.

3.1 Trivial case

Clearly, if we ignored the possibility of connect 4 for either side, then the number of
possible end states is 2% since all 30 days can have a red or yellow disc, depending on
how well Trevor plays on a given day (or whether the Spider software is rigged [3]).
Every possible end state corresponds to a path in Figure 2. For instance if we alternated
red and yellow discs, then the path would be S (for start) -+ Red 1 — Yellow 2 — Red
3 etc. For any state labelled with number N and colour C, there are 2V paths from the
start node to that state, where NV is an integer and C'is either red or yellow.

o SIEZ

yl, —» y2 —» y3 —» -

Figure 2: The trivial case



The important point is that once we reach a particular node such as “Red 3”, then it matters
not how we get there. The number of ways to proceed after reaching “Red 3” is indepen-
dent of the path required to get there from the starting state. This is the fundamental
reason why the dynamic programming algorithm can work.

3.2 One-dimensional grid

Now let us add a stipulation that four discs of the same colour on consecutive days is a
win (for one of the players), even if it “splits” two rows such as 6-7-8-9 or 14-15-16-17.
Note that this is equivalent to flattening the calendar month into a one-dimensional
line with 30 cells. In this case, dynamic programming fails. For instance, suppose we
reach the node “Red 15”. If the previous two days (13,14) were also red, then the next
day (16) must be yellow to avoid Red declaring Connect 4. But if the previous two
days were yellow, then there would be no such restriction.

Figure 3: Graph of states for one-dimensional HNTPC4

However, let us change the definition of state so that we record not only the colour of
the last day but also the streak. For instance “15, RR” means day 15 and the last two
results (but not last three) are red. Therefore after day 16 the state will either be “16,
RRR” or “16, Y”. This gives us enough information to determine if a connect 4 by either
side is looming. In this case, dynamic programming works again. The price we pay is

4



Figure 4: Building a path by chaining compatible blocks.

obviously the fact that we have many more states corresponding to a single day. The
graph showing all paths will look something like Figure 3 (restricted to days 7,8,9).
With some computation, one can show there are exactly 197, 900, 192 ways for a 30-
day game of one-dimensional HNTPC4 to end in a draw. This an order of magnitude
less than 2% = 1,073, 741, 824 ways of filling a 30-day grid ignoring Connect Fours by
either side.

Note that one can further simplify the graph by observing the symmetry between red
and yellow discs. For instance a streak of two reds is equivalent to a streak of two
yellows etc. However, this has not been done in Figure 3.

3.3 Two-dimensional grid

Now let us consider the 2-dimensional case. To simplify the argument, assume there
are only 4 columns but any number of rows. To get the dynamic programming prin-
ciple to work, we need to consider each row of four squares as a “unit”. By stacking
three units we obtain a “block” of three rows and four columns. Note that once we
reach row N, the previous three rows are the only information required to determine
which threats of connect 4 are looming for either side. Let us say that two blocks A, B
are “compatible” if it is possible to merge them into a 4 x 4 subgrid without either side
declaring Connect Four. Note that compatibility is not commutative, so if A, B can be
merged, then that does not imply B, A can also be merged. There are 2'? = 4096 pos-
sible blocks. We can eliminate some blocks by noting that if A contains a horizontal
Connect Four of either colour, then it won’t be compatible with any other block B (or
by using the red-yellow symmetry), but this number is still large.

Figure 4 shows how one can build a 5 x 4 grid by chaining together a number of 3 x 4
blocks as described above. With dynamic programming one can show that there are
124318 ways to complete a 5 x 4 grid without either side declaring Connect Four. The
network of paths will have three layers (since three blocks are needed to merge into a
5 x 4 grid) and 4096 nodes per layer, if we neglect the simplications described above.
For any pair of adjacent layers a link between two nodes is required for every pair
of compatible blocks. With an 8 x 4 grid, one gets 51, 309, 598 different solutions. The
number of solutions (and computation required) grows rapidly as we add more layers!



4 Conclusion

In dynamic programming, the basic idea is to set up a network of states so that some
quantity (such as number of paths) need only be computed once for each state. With
the ideas thus presented, the reader should be able to implement an algorithm to count
the number of possible draws in HNTPC4. Further variations on these themes are
possible and are left as an exercise for the interested reader. For instance:

e What happens on larger grids, e.g. size 8 x 20? Does the dynamic programming
algorithm scale up easily to large grids?

e What happens if the grid is not a rectangle? For instance September 2019 will
have 5 days missing from a 7 x 5 grid.

e What happens if neutral discs are allowed? For instance if Trevor plays Spider
Solitaire at work (but not home), then neutral discs will appear in the Saturday
and Sunday columns, plus any day(s) that Trevor has to call in sick.

e What happens if the start-position is non-empty? For example, how many ways
can Trevor defeat Spider Solitaire in HNTPC4 in the month December 2019 given
the first three results are Yellow-Yellow-Red?

References

[1] V. Allis, A knowledge-based approach of Connect-Four. The game is solved:
White wins, Masters Thesis, Department of Mathematics and Computer Science,
Vrije Universiteit Amsterdam, 1988.

[2] I. Setiadi, Damerau-Levenshtein Algorithm and Bayes Theorem for spell checker
optimization, Makalah IF2211 Strategi Algoritma — Sem. I Tahun (2013/2014).

[3] T. Tao, Random Walks: an application for detecting bias in Spider Solitaire pro-
grams, Parabola 55, no. 1, (2019).

[4] A. Wang, Counting paths on grids with obstructions, Parabola 55, no. 1, (2019).



	Introduction
	Connect Four
	Analysis of HNTPC4
	Trivial case
	One-dimensional grid
	Two-dimensional grid

	Conclusion

