Parabola Volume 56, Issue 1 (2020)

On a recursive fraction operation which leads to irrational numbers and Fibonacci numbers

Ashwin Sivakumar[1](#page-0-0)

Introduction

In the 3rd grade, I was taught fractions in the usual way. I thought: Why not try other ways to calculate fractions instead? In this paper, I describe a recursive fraction operation which in interesting ways leads to irrational numbers and Fibonacci numbers.

The operation

Consider the fraction $\frac{x}{y}$. If we add this same fraction to the numerator x and to the denominator y, we get

$$
\frac{x+\frac{x}{y}}{y+\frac{x}{y}}\,.
$$

If we keep adding $\frac{x}{y}$ to the inner-most numerators and denominators of the resulting fractions, then we get a sequence of fractions

$$
\frac{x}{y} \to \frac{x+\frac{x}{y}}{y+\frac{x}{y}} \to \frac{x+\frac{x+\frac{x}{y}}{y+\frac{x}{y}}}{y+\frac{x+\frac{x}{y}}{y+\frac{x}{y}}}\to \frac{x+\frac{x+\frac{x+\frac{x}{y}}{y+\frac{x}{y}}}{y+\frac{x+\frac{x}{y}}{y+\frac{x}{y}}}}{y+\frac{x+\frac{x+\frac{x}{y}}{y+\frac{x}{y}}}{y+\frac{x+\frac{x}{y}}{y+\frac{x}{y}}}} \to \cdots
$$

After *n* of these operations, we get a fraction $r_n = \frac{N_n}{D_n}$ $\frac{N_n}{D_n}$ where N_n and D_n denote the numerator and denominator of r_n , respectively, and where $r_0 = \frac{x}{n}$ $\frac{x}{y}$, $N_0=x$, and $D_0=y$, and where

$$
r_{n+1} = \frac{x + r_n}{y + r_n} = \frac{N_{n+1}}{D_{n+1}},
$$
\n(1)

and

$$
N_{n+1} = x + \frac{N_n}{D_n}
$$
 and $D_{n+1} = y + \frac{N_n}{D_n}$. (2)

If the sequence converges, then we get a limit r_{∞} .

¹ Ashwin Sivakumar is a 10th grade student from Bangalore, India.

From fractions to irrational numbers

By choosing different values of x and y , we find interesting sequences. For instance, set $x = 1$ and $y = 3$. Then

$$
r_0=\frac{1}{3}\,,\qquad r_1=\frac{1+\frac{1}{3}}{3+\frac{1}{3}}=\frac{2}{5}\,,\qquad\text{and}\qquad r_2=\frac{1+\frac{1+\frac{1}{3}}{3+\frac{1}{3}}}{3+\frac{1+\frac{1}{3}}{3+\frac{2}{5}}}=\frac{7}{17}\,.
$$

By calculating more terms of this sequence^{[2](#page-1-0)}, we see that

1 3 $\rightarrow \frac{2}{5}$ 5 $\rightarrow \frac{7}{15}$ 17 $\rightarrow \frac{12}{20}$ 29 $\rightarrow \frac{41}{22}$ 99 $\rightarrow \frac{70}{100}$ 169 $\rightarrow \frac{239}{775}$ 577 $\rightarrow \frac{408}{205}$ 985 $\rightarrow \frac{1393}{2200}$ 3363 \rightarrow \cdots .

This sequence converges to

$$
r_{\infty} = \frac{1 + \frac{1 + \frac{1 + \frac{1 + \dots + 1}{3 + \frac{1 + \dots +
$$

Here, we started with a rational number $\frac{1}{3}$ but ended with an irrational number $\sqrt{2}-1$. Let us try another two numbers, $x = 1$ and $y = 5$. We get the sequence

1 5 $\rightarrow \frac{3}{16}$ 13 $\rightarrow \frac{4}{15}$ 17 $\rightarrow \frac{21}{22}$ 89 $\rightarrow \frac{55}{285}$ 233 $\rightarrow \frac{72}{201}$ 305 $\rightarrow \frac{377}{1505}$ 1597 $\rightarrow \frac{987}{1101}$ 4181 $\rightarrow \frac{1292}{5478}$ 5473 \rightarrow \cdots .

This sequence converges to

r[∞] = 1 + 1+ 1+ 1+··· 5+··· 5+ 1+··· 5+··· 5+ 1+ 1+··· 5+··· 5+ 1+··· 5+··· 5 + 1+ 1+ 1+··· 5+··· 5+ 1+··· 5+··· 5+ 1+ 1+··· 5+··· 5+ 1+··· 5+··· = 0.23606797749978967 . . . = √ 5 − 2 .

Again, we started with a rational number but ended with an irrational number. For the numbers $x = 2$ and $y = 1$, we get a very simple irrational number:

			4 10 24 58 140 338 816 1970			
					$2 \rightarrow \frac{4}{3} \rightarrow \frac{10}{7} \rightarrow \frac{24}{17} \rightarrow \frac{38}{41} \rightarrow \frac{140}{99} \rightarrow \frac{338}{239} \rightarrow \frac{816}{577} \rightarrow \frac{1970}{1393} \rightarrow \cdots \rightarrow \sqrt{2}$.	

 2 For the calculations in this paper, I programmed using Java and the Eclipse Jee Neon IDE. If you want to see the source code of my program, then please go to the URL:

<https://github.com/AshwinSivakumar/Project-nest>

A surprising connection to famous numbers

Now, let's try the simple values $x = 1$ and $y = 2$. We get the sequence

$$
\frac{1}{2} \rightarrow \frac{3}{5} \rightarrow \frac{8}{13} \rightarrow \frac{21}{34} \rightarrow \frac{55}{89} \rightarrow \cdots
$$

We recognise here the famous Fibonacci numbers F_n

$$
\frac{F_2}{F_3} \rightarrow \frac{F_4}{F_5} \rightarrow \frac{F_6}{F_7} \rightarrow \frac{F_8}{F_9} \rightarrow \frac{F_{10}}{F_{11}} \rightarrow \cdots
$$

As Johannes Kepler discovered four centuries ago, these ratios converges to

$$
\begin{aligned}\n1 + \frac{1 + \frac{1 + \frac{1 + \dots}{2 + \dots}}{2 + \frac{1 + \dots}{2 + \dots}}}{2 + \frac{1 + \frac{1 + \dots}{2 + \dots}}{2 + \frac{1 + \dots}{2 + \dots}}} = 0.6180339887498949\ldots = \frac{1}{\varphi}, \\
2 + \frac{1 + \frac{1 + \frac{1 + \dots}{2 + \dots}}{2 + \frac{1 + \dots}{2 + \dots}}}{2 + \frac{1 + \frac{1 + \dots}{2 + \dots}}{2 + \frac{1 + \dots}{2 + \dots}}}\n\end{aligned}
$$

where $\varphi = \frac{1+\sqrt{5}}{2}$ $\frac{\sqrt{5}}{2}$ is the famous *golden ratio.* 3 3

It it surprising to see Fibonacci numbers appear here but it is also useful: for this sequence, we can determine the exact value of each term r_n , using Binet's Formula:

$$
F_n = \frac{1}{\sqrt{5}} (\varphi^n - \varphi^{-n}).
$$

In particular,

$$
r_n = \frac{F_{2n}}{F_{2n+1}} = \frac{\varphi^{2n} - \varphi^{-2n}}{\varphi^{2n+1} - \varphi^{-(2n+1)}}.
$$

Further research

Can you find other values of x and y that lead to interesting sequences and limits? In this paper, I used computational methods to find approximations for the limits. Is there an analytical way to find these? And can you find simple recursive relations to determine the numbers N_{n+1} and D_{n+1} from the numbers N_n and D_n ?

³See https://en.wikipedia.org/wiki/Golden_ratio.