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On a recursive fraction operation which leads to irrational
numbers and Fibonacci numbers

Ashwin Sivakumar'

Introduction

In the 3rd grade, I was taught fractions in the usual way. I thought: Why not try other
ways to calculate fractions instead? In this paper, I describe a recursive fraction opera-
tion which in interesting ways leads to irrational numbers and Fibonacci numbers.

The operation

Consider the fraction 5 If we add this same fraction to the numerator z and to the

denominator y, we get
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If we keep adding ¥ to the inner-most numerators and denominators of the resulting
fractions, then we get a sequence of fractions
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After n of these operations, we get a fraction r,, = % where N,, and D,, denote the
numerator and denominator of r,,, respectively, and where r, = g, Ny = x,and Dy =y,
and where
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and N N
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If the sequence converges, then we get a limit ...
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From fractions to irrational numbers

By choosing different values of z and y, we find interesting sequences. For instance,
setx = 1 and y = 3. Then
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By calculating more terms of this sequence?, we see that

1 2 7 12 41 70 239 408 1393

5 75 17 " 29 99 160 577 985 3363

This sequence converges to
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Here, we started with a rational number % but ended with an irrational number /2 — 1.
Let us try another two numbers, z = 1 and y = 5. We get the sequence

1 3 4 21 95 72 377 987 1292

5 713 17 89 ' 233 305 1597 4181 ' 5473

This sequence converges to

T (.23606797749978967 ... = /5 — 2.

Again, we started with a rational number but ended with an irrational number.
For the numbers v = 2 and y = 1, we get a very simple irrational number:
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2For the calculations in this paper, I programmed using Java and the Eclipse Jee Neon IDE. If you
want to see the source code of my program, then please go to the URL:
https://github.com/AshwinSivakumar/Project-nest
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A surprising connection to famous numbers

Now, let’s try the simple values z = 1 and y = 2. We get the sequence
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We recognise here the famous Fibonacci numbers F,
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As Johannes Kepler discovered four centuries ago, these ratios converges to
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where ¢ = Y5 is the famous golden ratio.?

It it surprising to see Fibonacci numbers appear here but it is also useful: for this
sequence, we can determine the exact value of each term r,, using Binet’s Formula:

1
F,=—(¢"— ™).
Fl ™)
In particular,
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Further research

Can you find other values of z and y that lead to interesting sequences and limits?
In this paper, I used computational methods to find approximations for the limits.
Is there an analytical way to find these? And can you find simple recursive relations to
determine the numbers N,,.; and D,,; from the numbers N,, and D,,?

3See https://en.wikipedia.org/wiki/Golden_ratio.
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