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On Sylvester’s Sequence and some of its properties

A. Anas Chentouf1

1 Introduction

Many of us recall first seeing sequences in elementary school, but it does not end there
- sequences also commonly feature in research as they allow one to observe patterns in
mathematical objects (numbers, matrices, etc.). Over the years, mathematicians have
crossed great lengths in order to improve our understanding of some sequences, but
there is far more out there that awaits to be discovered and understood, and Sylvester’s
Sequence is merely an example of the latter.

Sylvester’s Sequence is named after the renowned English mathematician J.J. Syl-
vester who is said to have introduced it in 1880 by in [1], although some sources at-
tribute the sequence to E. Lucas [2]. The sequence was used by Sylvester to study
Egyptian fractions, which we shall later visit. Nearly a century and a half since its in-
troduction, the sequence continues to be relevant as it is the focus of open conjectures,
some of which we will note.

Definition 1. We define Sylvester’s Sequence, denoted by {sn}∞n=0, by s0 = 1 and the
following recursive relationship:

sn+1 = 1 +
n∏

k=0

sk for all n ≥ 0 . (1)

The first few terms of the sequence are 1, 2, 3, 7, 43, 1807, etc. Note that the index of
multiplication in (1) can be altered to begin from k = 1 when n ≥ 1 since s0 = 1.

Property 2. Rather than defining sn using all previous terms, sn+1 can also be written
in terms of sn alone, as follows for n ≥ 1:

sn+1 = 1 +
n∏

k=1

sk = 1 + sn

n−1∏
k=1

sk = 1 + sn(sn − 1) = s2n − sn + 1 . (2)

1A. Anas Chentouf is a recent high school graduate who enjoys problem-solving and sharing his
passion for mathematics.
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2 Algebraic treatment of Sylvester’s Sequence

It can easily be verified that {sn}∞n=0 is a strictly increasing sequence of positive integers.
One of the most interesting facts regarding Sylvester’s Sequence pertains to the sum

of its reciprocals. Consider the partial sums of the sequence of Sylvester reciprocals,
given by

un :=
n∑

k=1

1

sk
.

Note that u1 = 1
2
, u2 = 5

6
, u3 = 41

42
. The pattern, in which the denominators are one less

than Sylvester numbers, inspires us to consider the following property.

Property 3. un =
sn+1 − 2

sn+1 − 1
.

Proof. We proceed by induction. The base case has been dealt with above, so we are

left with the inductive hypothesis. Assume that un =
sn+1 − 2

sn+1 − 1
. Then by (2),

un+1 = un +
1

sn+1

=
1

sn+1

+
sn+1 − 2

sn+1 − 1
=
s2n+1 − sn+1 − 2

s2n+1 − sn+1

=
sn+2 − 2

sn+2 − 1
,

which concludes the inductive step. 2

Theorem 4 (Adapted from Croatia National Olympiad, 2005 [3]).
∞∑
k=1

1

sk
= 1 .

Proof. By Property 3,
∞∑
k=1

1

sk
= lim

n→∞
un = lim

n→∞

sn+1 − 2

sn+1 − 1
= 1 .

2

Alternatively, we may prove convergence of the series by applying the Limit Ratio
Test on this series. Knowing that sn →∞ for n→∞:

lim
n→∞

∣∣∣∣ snsn+1

∣∣∣∣ = lim
n→∞

sn
s2n − sn + 1

= 0 < 1 ,

and the series must thus converge. Yet, this only shows that it converges, without
giving a sum.

We now shift our attention back to the idea of Egyptian fractions, which was behind
the introduction of Sylvester’s Sequence. Recall that Egyptian fractions are the sums of
distinct unit fractions, i.e., reciprocals of distinct positive integers. For example, 10

21
is an

Egyptian fraction because one may write it as 1
3
+ 1

7
. Note that Theorem 4 provides an

affirmative answer to whether 1 can be written as the sum of a non-geometric, infinite
series of unit fractions.
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Definition 5. For all x ∈ Q with 0 < x ≤ 1, let σ(x) be the smallest positive integer n
such that x can be written as the sum n distinct unit fractions. Likewise, we define

hn(x) =

{
1, if x is the sum of n distinct unit fractions
0, otherwise.

(3)

It is well-known that every rational number 0 < x ≤ 1, can be written as a sum of
unit fractions, so σ(x) is indeed well-defined. An example of the construction could be
Fibonacci’s Greedy Algorithm; see [4]. However, we focus on the case where x = 1.
Inspired by Property 3 and Definition 2, we present the following result.

Theorem 6 (Related to Kellog’s Problem [5]).

hn(1) = 1 for all n ≥ 3 .

Proof. Note that, by Property 3, we can write

n−1∑
k=1

1

sk
+

1

sn − 1
= un +

1

sn − 1
=
sn − 2

sn − 1
+

1

sn − 1
= 1 .

For these to be distinct, sn − 1 ought to be strictly greater than sn−1, which implies that
n ≥ 3. This therefore shows that 1 can be written as the sum of n unit fractions. 2

Soundararajan [6] also used elementary techniques along with Muirhead’s Inequal-
ity to show that, for any n, the closest approximation of 1 as the sum of reciprocals of
integers a1, a2, . . . , an, i.e., such that

1

a1
+

1

a2
+ · · ·+ 1

an
= 1− ε

for ε as small as possible, is obtained when ai = si for all 1 ≤ i ≤ n.
The previous two facts are related to Erdős’ Conjecture, which roughly states that

for a class of sequences obeying a certain asymptotic condition2, the sum of its recipro-
cals is rational only when the sequence has the form of Sylvester’s Sequence.

Conjecture 7 (Erdős, 1980 [7]). Consider a sequence of positive integers an such that:

(1) lim
n→∞

an+1

a2n
= 1

(2)
∞∑
k=1

1

sk
∈ Q

Then, there exists N such that, for all n ≥ N ,

an+1 = a2n − an + 1 .

2A condition on an expression as it approaches infinity.
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Of course, Sylvester’s Sequence obeys Condition (1), as

lim
n→∞

an+1

a2n
= lim

n→∞

a2n − an + 1

a2n
= 1 ,

and by Theorem 4, Condition (2) also holds.

Condition (1) is, in fact, quite important and deserves a discussion of its own. In
general, asymptotically exponential sequences are characterized by lim

n→∞
an+1

an
= c for

some c ∈ R. However, when a sequence obeys Condition (1), it is said to asymptot-
ically be “doubly-exponential”. While the simplest exponential sequence would be
of the form ax, doubly exponential functions could be of the form ab

x . Remarkably,
Sylvester’s Sequence happens to be an example of the latter. Golomb [8] used elemen-
tary techniques to show that Sylvester’s Sequence obeys the formula

sn =
⌊
B2n−1

+
1

2

⌋
for B ≈ 1.5979102. From a computational perspective, the issue with this closed-form
formula3 is that to calculate the exact value of sn, the constant B must be known to
some required degree of accuracy in its decimal digits. Golomb obtained this constant
using infinite products, and other results have expressed B it as an infinite sum, but
the same issue of obtaining it to the required number of decimals persists.

3 Number-theoretic properties of Sylvester’s Sequence

We now shift gears to a number-theoretic approach of the sequence.

Property 8 (Co-primality of distinct terms). For all i 6= j,

gcd(si, sj) = 1 .

Proof. Without loss of generality, suppose that i > j and recall that si = 1 +
∏i−1

k=1 sk.
Assume that a prime p divides gcd(si, sj). Then p|sj|

∏i−1
k=1 sk, and we conclude that p|1,

a contradiction. Thus any two distinct terms of the sequence are relatively prime. 2

This observation is so simple yet important to the study of Sylvester sequences.

Problem 9 (Mathematical Olympiad Summer Program, 1997). Prove that the sequence
1, 11, 111, 1111,. . . contains an infinite sub-sequence whose terms are pairwise relatively prime.

Proof. Note that the sequence whose nth term is the decimal number comprised of n
1’s is given by an = 10n−1

9
. As shown in [9], gcd(xm−1, xn−1) = xgcd(m,n)−1. Applying

this result, we would like to find m and n that gcd(am, an) = 1. Thus,

1 = gcd
(10m − 1

9
,
10n − 1

9

)
=

gcd(10m − 1, 10n − 1)

9
=

10gcd(m,n) − 1

9
3i.e., a formula that expresses sn as a function of n
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or, equivalently, 10gcd(m,n) − 1 = 9 which gives gcd(m,n) = 1.
Hence, we are looking for an infinite number of indices which are pair-wise co-

prime. Recalling the Sylvester Sequence, we see that it satisfies the aforementioned
co-primality, and thus, the subsequence {asn}∞n=1 satisfies the problem’s conditions. 2

The co-primality of the successive terms can also be used to prove the existence of
infinitely many primes, as in Euclid’s famous proof.

A number of open conjectures on the number-theoretic properties of Sylvester’s
Sequence still exist. An integer a is defined square-free if no prime p satisfies p2|a. It
is conjectured that all numbers in Sylvester’s Sequence are square-free but this result
is far from proven. Calculations do indicate that this is true for all known Sylvester
numbers; see [10]. However, some elementary results exist on the prime divisors of
the Sylvester sequence. One may prove, through quadratic residues, that no primes of
the form 6k − 1 divide terms of the sequence.

Property 10 ([11]). sn is never divisible by a prime of the form p = 6k − 1.

Proof. Assume that p|sn for some prime p = 6k − 1 and integers n and k. Recall that
sn = s2n−1 − sn−1 + 1. Thus, we have

s2n−1 − sn−1 + 1 ≡ sn ≡ 0 (mod p) .

Multiplying by 4, and factoring the square term, we get

4s2n−1 − 4sn−1 + 4 ≡ 0 (mod p)

so (
2sn−1 − 1

)2
≡ −3 (mod p) .

Thus, we get that (−3
p

)
= 1 (4)

where, for any odd prime q,

(a
q

)
=

{
1, if there exists x such that x2 ≡ a (mod q) ;
−1, otherwise

is the Legendre symbol. This symbol satisfies the following easily-proven properties(a
q

)( b
q

)
=
(ab
q

)
and

(a
q

)
=
(a+ q

q

)
(5)

as well as less easily-proven properties such as(−1
q

)
= (−1)

q−1
2 (6)
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and Gauss’ Law of Quadratic Reciprocity:(q
p

)(p
q

)
= (−1)

p−1
2

q−1
2 . (7)

By (4) and (5),

1 =
(−3
p

)
=
(−1
p

)(3
p

)
. (8)

Moreover, since, p ≡ −1 (mod 6), then p ≡ 2 (mod 3) and so, by (5),(p
3

)
=
(2
3

)
= −1 .

Also, by (7), (3
p

)(p
3

)
= (−1)

p−1
2

3−1
2 = (−1)

p−1
2 , (9)

so (3
p

)
= (−1)

p+1
2 .

Therefore by (8), (−1
p

)
= (−1)

p+1
2 . (10)

But this contradicts (6), so p cannot divide sn. 2

An amusing question to ask ourselves is whether any Sylvester numbers happen to
be Fibonacci numbers too.

Theorem 11. The only numbers which appear in both Sylvester’s and Fibonacci’s sequences
are 1, 2, 3.

Proof. This is equivalent to searching for m,n such that sm = Fn. Our main approach
is to compare the residues of either sequence modulo some integer. For Sylvester’s Se-
quence, we search for integers that, reduced (mod r), are eventually constant; that is,
we search for someN such that for allm ≥ N , sm+1 ≡ s2m−sm+1 ≡ sm (mod r). As for
Fibonacci’s sequence, the recursive nature of the sequence, and the subsequent Pisano
periods reduced (mod r), provide us with the tools required to solve this problem, as
in [12]. The periodicity of the sequence (mod r) is guaranteed because there are only
r2 possible consecutive values, so by the Pigeonhole Principle, there must be a pair that
when reduced (mod r) occurs twice. Since the Fibonacci sequence recursively defines
a term based on the two previous terms, we have thus established the periodicity of the
sequence (mod r). We have also attached the Python code for the search for periods
in the Addendum.

Assume sm = Fn and m ≥ 3. We claim that sm ≡ 3 (mod 4). This is certainly true
for m = 3. Since sm+1 = s2m − sm + 1, an inductive argument shows that this is true for
all m ≥ 3 since sm ≡ 3 (mod 4) implies that sm+1 ≡ s2m − sm + 1 ≡ 7 ≡ 3 (mod 4).

The Fibonacci sequence, reduced (mod 4), has a period of 6. Furthermore,

Fn ≡ sm ≡ 3 (mod 4) if and only if n ≡ 4 (mod 6) . (11)
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Moreover, sm ≡ 7 (mod 9) for m ≥ 3. This is clearly true for m = 3, as sm = 7.
Assume that this is true for sm. Then, since sm+1 = s2m − sm + 1, we also get that
sm+1 ≡ s2m − sm + 1 ≡ 43 ≡ 7 (mod 9).

However, the Fibonacci sequence, reduced (mod 9), has a period of 24. Using the
attached code and results,

Fn ≡ sm ≡ 7 (mod 9) if and only if ≡ 9, 15 (mod 24) . (12)

However, the deduction from (11) is that n must be even, while the deduction from
(12) is that n is odd, a contradiction. Thus, if sm is also a Fibonacci number, then m ≤ 2.
Checking the values, we see that 1, 2, 3 happen to occur in both sequences. 2

Alternatively, using the Chinese Remainder Theorem to combine the two equiva-
lence (mod 4) and (mod 9), we could have also noted that 7 does not appear in the
periodic residue cycle of the Fibonacci Sequence reduced (mod 36), and similarly ob-
tained a contradiction. However, computationally speaking, the second proof is more
efficient as it requires to calculate 6 + 24 = 30 residues in total, while the period
(mod 36) is of length 24.

4 Conclusion

Sylvester’s Sequence is at the core of some interesting research and conjectures per-
taining to number theory, as we have indicated. Although currently unproven, we
also invite the reader to check that the first few terms of the sequence are indeed
square-free. The reader is also invited to numerically verify that that Property 10
holds, and we highly suggest that the reader explores the sequence through its double-
exponential nature and observing divisibility patterns throughout its terms. The The
On-Line Encyclopedia of Integer Sequences [13] lists further information and refer-
ences on Sylvester Sequences for the interested reader.

While we presented the application of Sylvester’s Sequence to Egyptian fractions
through an expository algebraic approach, this can also be viewed from a number-
theoretic perspective. This is of major importance as the topic of Egyptian fractions
dates centuries ago. The approach used in Theorem 11, using the periodic nature of
residues modulo certain integers, could also be extended to other linear recurrences
such as Lucas sequences.

Sequences, in general, continue to play a major role in both professional and recre-
ational mathematics. Although they often offer us the ability to note and deduce pat-
terns, we have seen, as is the case with Sylvester’s Sequence, that some are not well
understood - yet!
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Addendum

Below, we have attached the code and its output for finding the period of the Fibonacci
sequence (mod 9), and for figuring out when Fn ≡ 7 (mod 9). If the latter is true, then
“compatible” is displayed beside the number.

Code:

def f(n):
if n==0:

return 0
if n==1:

return 1
else:

return f(n-1)+f(n-2)

def period(n):
if f(n)%9==0:

if f(n+1)%9==1:
return True

else:
return False

else:
return False

n=2
while period(n) is False:

if f(n)%9==7:
print(n, "compatible")
n+=1

else:
print(n, "failed")
n+=1

print(n, ’is our period’)

Output:

2 failed
3 failed
4 failed
5 failed
6 failed
7 failed
8 failed
9 compatible
10 failed
11 failed
12 failed
13 failed
14 failed
15 compatible
16 failed
17 failed
18 failed
19 failed
20 failed
21 failed
22 failed
23 failed
24 is our period

Thus, Fn+24 ≡ Fn (mod 9), and Fn ≡ 7 (mod 9) if and only if n ≡ 9, 15 (mod 24).
Replacing each 9 by 4 and each 7 by 3, respectively, we get the search for the period
(mod 4).
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