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A modular arithmetic analysis of the Sierpiński Number
Problem

Arya R. Kondur1

1 Introduction

The term “Sierpiński number” comes from renowned Polish mathematician Wacław
Sierpiński. However, the work involved dates to an earlier mathematician by the name
of Raphael M. Robinson. In 1958, Robinson [2] developed a table of prime numbers of
the form k2n+1 and in doing so, he found primes for all values of k less than 100 except
for k = 47.

Following this discovery, Sierpiński [4] then proved in 1960 that there are infinitely
many odd integers k such that k2n+1 is not prime for any integers n. This is a fascinat-
ing result and it led to the search for the least possible such value of k, or in colloquial
terms, the least Sierpiński number. This search is called the Sierpiński Number Problem.
In 1962, John Selfridge proved that k = 78557 was a Sierpiński number. This was done
mainly through private correspondence with Paul Erdős, who commented on this re-
sult in [1]. Selfridge’s proof used the concept of a covering set, which we shall discuss
in the following section. Selfridge went beyond this proof and conjectured that this
value was the least Sierpiński number. At the time, and even currently, k = 78557 is
the least known Sierpiński number.

However, there still remain five numbers - 21181, 22699, 24737, 55459, 67607 - that
could be even smaller Sierpiński numbers. To eliminate any of these numbers, it suf-
fices to find a value of k2n + 1 that is prime. Many computational techniques [4] are
being used despite the obstacles caused by the increasing size of prime numbers. Thus,
in this paper, we aim to complete two tasks. First, prove theorems that will allow us
to simplify the Sierpiński Number Problem. Second, develop a searching method for
prime numbers that would aid the current sequential searching techniques.

1Arya R. Kondur is a student at Monta Vista High School, California, USA.
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2 Introductory theorems and definitions

We shall start with the most simple definition relating to Sierpiński numbers, which is
that of covering sets. David Wells [5] has given an apt definition, but we tailor it to our
needs here.

Definition 1. Given a Sierpiński number k, let Ck denote a covering set for k: this is a
smallest possible set of distinct prime numbers such that, for all n ∈ N, at least one element in
Ck divides k2n + 1.

Each Sierpiński number has a partial covering set, which is a subset of its full cov-
ering set. A more formal definition is given below.

Definition 2. Given a Sierpiński number k and a positive integer n, let Pn,k denote a partial
covering set for k: this is a smallest possible set of distinct prime numbers such that, for all
m ≤ n, at least one element in S divides k2n + 1. A partial covering set is the smallest
possible set of distinct prime numbers such that for all positive integers m ≤ n at least one
element in Pn,k divides k2m + 1.

For some positive integers, there exists a covering set such that each element will
repeat as a divisor of k2n + 1 in a cyclic pattern.

Definition 3. Let k be a positive integer. A prime number p is said to cycle by a positive
integer d with respect to k if and only if p divides k2n+d + 1 whenever p divides k2n + 1 for
any n. A covering set Ck (resp., partial covering set Pn,k) is said to cycle by a positive integer d
with respect to k if and only if p cycles by d with respect to k for each element p ∈ Ck (resp.,
c ∈ Pn,k).

For each prime p, let F (p) be the smallest positive integer such that 2d ≡ 1 (mod p).

Theorem 4. For all positive integers k and d, each prime p cycles by dF (p) with respect to k.

Proof. Suppose that k2n + 1 ≡ 0 (mod p). Then

k2n+dF (p) + 1 ≡ k2n2dF (p) + 1 ≡ k2n
(
2F (p)

)d
+ 1 ≡ k2n1d + 1 ≡ k2n + 1 ≡ 0 (mod p) .

By Definition 3, p cycles by dF (p) with respect to k.

Now, we shall define two sets that will be used throughout the rest of this paper:

Mk = {F (c) : c ∈ Ck}
Mn,k = {F (m) : m ∈ Pn,k}

Note that Mn,k is a subset of Mk. Also, let Lk be the least common multiple of the
elements in Mk and let Ln,k be the least common multiple of the elements in Mn,k.

Theorem 5. For each positive integer k, Ck cycles by Lk with respect to k, and Cn,k cycles by
Ln,k with respect to k.
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Proof. Let p ∈ Ck. By definition, Lk is a multiple of F (p), so Lk = dF (p) for some
positive integer d. By Theorem 4, p cycles by Lk with respect to k. The second claim is
proved similarly.

Definition 6. For all integers n and k, let Dn,k be the set of prime divisors of k2n + 1. An
optimal divisor of k2n + 1, denoted by σn,k, is an element p ∈ Dn,k with smallest value F (p).

In other words, out of all the elements d ∈ Dn,k, the value F (d) is minimized when
d = σn,k. This leads to the following theorem.

Theorem 7. For all positive integers n and Sierpiński numbers k, σn,k ∈ Ck.

Proof. By definition, a covering set Ck must be smallest possible, so each element in Ck

must cycle by the least number possible. By Theorem 5, Ck will cycle by Lk, which is
the least common multiple of the elements in Mk. In order for Lk to be minimal, σn,k
must belong to Ck.

This concludes the discussion of the basic definitions and theorems needed to fur-
ther the analysis of the Sierpiński numbers.

3 Application to possible Sierpiński numbers

At the date of writing this paper, there remain five integers still in contention to be
named the smallest Sierpiński number. In the following subsections, we analyze each
number in more detail using the theorems and definitions established in Section 2. For
the following table, keep in mind the notation F (x) first mentioned in Theorem 4.

Odd prime divisor p F (p) Odd prime divisor p F (p)

3 2 37 36
5 4 41 20
7 3 43 14

11 10 47 23
13 12 53 52
17 8 59 58
19 18 61 60
23 11 67 66
29 28 71 35
31 5 73 9

Table 1: The 20 smallest odd primes and their multiplicative orders

The above table will prove to be useful in the following subsections, in which we
delve deeper into the cyclic patterns in the five remaining cases that represent possible
Sierpiński numbers.
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3.1 Case 1: k = 21181

Consider the expression k2n + 1 for k = 21181. For n = 1, the expression yields 42363,
which is divisible by 3. By Table 1, we know that 3 cycles by 2, so the expression
21181 ·2n+1 will be divisible by 3 for n = 1, 3, 5, and so on (i.e. 21181 ·2n+1 is divisible
by 3 when n = 2q + 1 for some nonnegative integer q). Here, we say the cyclic pattern
of 3 for 21181 is n = 2q + 1. Similarly, the expression is divisible by 5 for n = 2 and 5
cycles by 4, as per Table 1. Thus, 21181 · 2n + 1 is divisible by 5 when n = 4q + 2 for
some nonnegative integer q.

Note that in the table below, not all values of n are displayed. This is because many
are included in a previously established cyclic pattern. For example, n = 3 is not shown
since it is included in the cyclic pattern for the optimal divisor 3, which is n = 2q + 1
(i.e. n = 2q + 1 = 3 when q = 1).

n Dn,21181 σn,21181 F (σn,21181) Pn,21181 Ln,21181

1 {3} 3 2 {3} 2
2 {5} 5 4 {3, 5} 4
4 {13, 131, 199} 13 12 {3, 5, 13} 12
8 {17, 467, 683} 17 8 {3, 5, 13, 17} 24
12 {7, 941} 7 3 {3, 5, 7, 13, 17} 24
20 {83077} 83077 1932 {3, 5, 7, 13, 17, 83077} 3864
44 {89, 353, 2887237, 4107893} 89 11 {3, 5, 7, 13, 17, 89, 83077} 42504
68 {342467, 27897143} 342467 342466 {3, 5, 7, 13, 17, 89, 83077, 342467} 7278087432

Table 2: k = 21181

Note that starting with n = 20, new values are added to Cn,21181 every 24 iterations
of n. This is because the subset {3, 5, 7, 13, 17} cycles by 24, but none of the elements
cover values of n where n = 24q + 20. This observation will be explored further in the
following subsections.

3.2 Case 2: k = 22699

Table 3 addresses the case k = 22699. Note that, starting with n = 118, new values are
added to Cn,22699 every 72 iterations of n.

n Dn,22699 σn,22699 F (σn,22699) Pn,22699 Ln,22699

1 {3, 37} 3 2 {3} 2
2 {7, 17, 109} 7 3 {3, 7} 6
4 {5, 19} 5 4 {3, 5, 7} 12
6 {11, 13} 11 10 {3, 5, 7, 11} 60
10 {17, 23} 17 8 {3, 5, 7, 11, 17} 120
22 {19, 47, 1721, 61949} 19 18 {3, 5, 7, 11, 17, 19} 360
30 {13,173,63841,169753} 13 12 {3, 5, 7, 11, 13, 17, 19} 360
70 {73, 239, 3884047} 73 9 {3, 5, 7, 11, 13, 17, 19, 73} 360
118 {53, 547, 2022359} 53 52 {3, 5, 7, 11, 13, 17, 19, 53, 73} 4680
190 {84884846681} 84884846681 42442423340 {3,5,7,11,13,17,19,53,73,84884846681} Too large

Table 3: k = 22699
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3.3 Case 3: k = 24737

Table 4 addresses the case k = 24737. Note that, starting with n = 55, new values are
initially added to Cn,24737 every 24 iterations of n.

n Dn,24737 σn,24737 F (σn,24737) Pn,24737 Ln,24737

1 {5} 5 4 {5} 4
2 {3} 3 2 {3, 5} 4
3 {7, 17} 7 3 {3, 5, 7} 12
7 {907} 907 906 {3, 5, 7, 907} 1812
10 {13, 17} 17 8 {3, 5, 7, 17, 907} 3624
23 {13, 97, 599, 274723} 13 12 {3, 5, 7, 13, 17, 907} 3624
31 {503, 12689} 503 251 {3, 5, 7, 13, 17, 503, 907} 909624
55 {31, 112967, 4461227} 31 5 {3, 5, 7, 13, 17, 31, 503, 907} 4548120
79 {11, 7177613} 11 10 {3, 5, 7, 11, 13, 17, 31, 503, 907} 4548120
103 {2118089} 2118089 264761 {3, 5, 7, 11, 13, 17, 31, 503, 907, 2118089} ≈ 1.20 · 1012

Table 4: k = 24737

3.4 Case 4: k = 55459

Table 5 addresses the case k = 55459. It may seem that new values are added every

n Dn,55459 σn,55459 F (σn,55459) Pn,55459 Ln,55459

1 {3} 3 2 {3} 2
2 {7, 11, 43, 67} 7 3 {3, 7} 6
4 {5, 103} 5 4 {3, 5, 7} 12
6 {13} 13 12 {3, 5, 7, 13} 12
10 {181, 211, 1487} 181 180 {3, 5, 7, 13, 181} 180
22 {11, 709, 1151, 25913} 11 10 {3, 5, 7, 11, 13, 181} 180
34 {37} 37 36 {3, 5, 7, 11, 13, 37, 181} 180
46 {47, 19477, 208889, 20408747} 47 23 {3, 5, 7, 11, 13, 37, 47, 181} 4140
58 {43, 59} 43 14 {3, 5, 7, 11, 13, 37, 43, 47, 181} 28980
94 {467} 467 466 {3, 5, 7, 11, 13, 37, 43, 47, 181, 467} 6752340

Table 5: k = 55459

36 iteration of n, but by expanding the table, we see this is not the case. The next two
points at which new values are added to Cn,55459 are n = 118 and n = 130. It is clear
now that there is no clear pattern here. This means that to check for points where new
values are added, we must keep incrementing n by 12.
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3.5 Case 5: k = 67607

Table 5 addresses the case k = 67607. This fifth and final case is a bit more interesting

n Dn,67607 σn,67607 F (σn,67607) Pn,67607 Ln,67607

1 {5} 5 4 {5} 4
2 {3, 109} 3 2 {3, 5} 4
4 {31, 73, 239} 31 5 {3, 5, 31} 20
7 {13, 17} 17 8 {3, 5, 17, 31} 40
11 {19, 29} 19 18 {3, 5, 17, 19, 31} 360
19 {13, 41} 13 12 {3, 5, 13, 17, 19, 31} 360
27 {198017} 198017 99008 {3, 5, 13, 17, 19, 31, 198017} 4455360
35 {11, 22129} 11 10 {3, 5, 11, 13, 17, 19, 31, 198017} 4455360
51 {37, 43, 4027} 43 14 {3, 5, 11, 13, 17, 19, 31, 43, 198017} 4455360
59 {23, 41} 23 11 {3, 5, 11, 13, 17, 19, 23, 31, 43, 198017} 49008960

Table 6: k = 67607

than the previous four cases. Here, we see that starting with n = 19, new values
are added to Cn,67607 every 8 or 16 iterations of n. However, this pattern is broken
following n = 59, since the next time a new value is added is for n = 99. Following
this, the next time is n = 131. There doesn’t seem to be a clear cut pattern here, so the
conclusions discussed in the following section may not entirely apply to k = 67607.

This concludes our recording of data regarding certain aspects and characteristics
of the five possible Sierpiński numbers. With these tables, for each k2n+1, we recorded
values of n, the divisor set for the certain n, the actual optimal divisor, the multiplica-
tive order of 2 modulo the optimal divisor, the partial covering set for the certain n,
and the least common multiples of Mn,k (which was not explicitly recorded, but can be
found using Pn,k which was recorded).

4 Discussion of Results

The results of Section 3 provide adequate guidance to further the exploration into four
of the five cases and understand if they are Sierpiński numbers. For k = 21181, it
suffices to check only values of n that satisfy n = 24q + 20 for some integer q. Thus, it
is only necessary to check approximately 1

24
(about 4%) of all positive numbers n.

Similar approaches can be made for the cases detailed in Subsections 3.2 and 3.3.
For k = 22699, it suffices to check only values of n that satisfy n = 72q + 118 for some
integer q. Thus, it is only necessary to check approximately 1

72
(about 1.44%) of all

natural numbers n. For k = 24737, it suffices to check only values of n that satisfy
n = 24q + 55 for some integer q. Thus, it is only necessary to check approximately 1

24

(about 1.4%) of all natural numbers n.
In the previous three cases, it is clear the search for a prime by sequentially check-

ing values of n could be cut down significantly. However, for the cases detailed in
Subsections 3.4 and 3.5, the lack of pattern demonstrates that we can only check values
of n in increments of 8 or 12. Specifically, for k = 55459 it suffices to check only values
of n = 12q + 22 for some integer q. For k = 67607, we only need to check values of
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n = 8q + 11 for some integer q. In both these cases, we see that it is only necessary to
check approximately 1

12
(about 8.3%) and 1

8
(exactly 12.5%) of all natural numbers n,

respectively.
Despite this, we must say that it is highly unlikely for any of the remaining numbers

to actually be Sierpiński numbers. The values of Ln,k increase at a rapid rate that does
not occur with any known Sierpiński numbers. Returning to the main focus of this
paper, we claim to have accomplished our purpose, which was twofold: first, to estab-
lish theorems that might help in better understanding the Sierpiński Number Problem
and how to solve it; and second, to formulate a novel searching pattern for possible
primes in the expressions of Sierpiński numbers that would improve basic sequential
searching.

References
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