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Solutions 1611–1620
Q1611 Suppose that the expression

(

1 + x2 +
1

x

)10

is expanded and like terms collected. Find the coefficient of x3.

SOLUTION We follow the ideas of Problem 1605. Noting that

x3 = (x2)m
(1

x

)2m−3

,

we will obtain a term in x3 by choosing m of the factors to supply an x2 and 2m− 3 of
the remaining 10−m factors to supply a 1/x; all the other factors must supply a 1. The
number of ways of doing this is

(
10

m

)(
10−m

2m− 3

)

.

To obtain a final result of x3, clearly at least two factors of x2 must be included; so
m ≥ 2. The total number of terms specified above is 3m − 3, which is at most 10; so
m ≤ 4. So the relevant values of m are 2, 3, 4, and the coefficient of x3 is

(
10

2

)(
8

1

)

+

(
10

3

)(
7

3

)

+

(
10

4

)(
6

5

)

= 360 + 4200 + 1260 = 5820 .

Alternatively, if you prefer Arya Kondur’s method of trinomial coefficients (see the
previous issue of Parabola): the expansion of the trinomial is

(

1 + x2 +
1

x

)10

=
∑

i+j+k=10

(
10

i, j, k

)

1i(x2)j
(1

x

)k

=
∑

i+j+k=10

(
10

i, j, k

)

x2j−k ,

and the triples which will give a term in x3 are (7, 2, 1), (4, 3, 3) and (1, 4, 5). So the
coefficient of x3 is
(

10

7, 2, 1

)

+

(
10

4, 3, 3

)

+

(
10

1, 4, 5

)

=
10!

7! 2! 1!
+

10!

4! 3! 3!
+

10!

1! 4! 5!
= 360+4200+1260 = 5820

as above.
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Q1612 Find all positive integers x, y such that

x+ y

x2 − xy + y2
=

8

73
.

SOLUTION The equation

8(x2 − xy + y2) = 73(x+ y) (∗)

shows that x + y is a multiple of 8; therefore x − y = (x + y) − 2y is the difference of
two even numbers and hence is even. So we substitute

u =
x+ y

8
, v =

x− y

2
,

which is equivalent to
x = 4u+ v , y = 4u− v .

Note that u, v are integers, and u is positive. Substituting into (∗) after dividing both
sides by 8, we get

(16u2 + 8uv + v2)− (16u2 − v2) + (16u2 − 8uv + v2) = 73u ,

which simplifies to
3v2 = 73u− 16u2 .

Now 3v2 cannot be negative; so 73u − 16u2 ≥ 0; as u is positive, this gives 0 < u < 73
16

;
and u is an integer, so we have u = 1, 2, 3, 4. It is easy to test these four possibilities: we
find that u = 1, 2, 4 do not give integer values for v. The only solution is u = 3, v = ±5
and hence

x = 17 , y = 7

or vice versa .

Q1613 Prove that any given string of decimal digits occurs (consecutively and in the
given order) among the digits of n2 for some integer n.

SOLUTION Let 2m be an even number which contains the given digits consecutively
and in order. (So if the last of the digits is even we can just take the given digits; if it
is odd then we would take, for example, the given digits followed by a zero.) Let k be
the number of digits in 2m. Take

n = m10k + 1

and consider
n2 = m2 102k + 2m 10k + 1 .

Now the first term here ends in 2k zeros. The second consists of the digits of 2m (there
are k of these) followed by another k zeros. This is 2k digits altogether, so if we add
the first two terms then the digits of 2m are added to zeros and do not change. And
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the final 1 is then added to the last of the k zeros, and does not affect the digits of 2m.
Therefore n2 contains the digits of 2m, which contain the given digits. In more detail,
if the digits of 2m are d1d2 · · · dk and the digits of m2 are c1c2 · · · c2k, then we have

n2 = c1c2 · · · c2k
2k digits

︷ ︸︸ ︷

00 · · ·000 · · ·0 +

2k digits
︷ ︸︸ ︷

d1d2 · · · dk00 · · ·0 + 1

= c1c2 · · · c2kd1d2 · · · dk00 · · ·1

which contains the required digits.

Q1614 Let x1, x2, . . . , xn be n different positive integers in increasing order, and sup-
pose also that xn < 2x1. That is,

x1 < x2 < · · · < xn < 2x1 .

Prove that if p is a prime number, s is a non–negative integer and the product x1x2 · · ·xn

is a multiple of ps, then the quotient is at least n! ; that is,

x1x2 · · ·xn ≥ psn! .

SOLUTION We shall use mathematical induction on the product x1x2 · · ·xn: that is,
we prove the result is true when the product is 1 (this is known as the basis case);
and we shall show that we can deduce the result for any specific value of the product,
provided we know that it is true for all smaller values. This will show that the result
is true in all cases. If you have not met proof by mathematical induction and you are a
student, then please ask your teacher.

We begin by noting that the result is obvious when n = 1 (since x1 is a multiple of ps

we have x1 ≥ ps), and also for s = 0 (since x1x2 · · ·xn is a product of n different positive
integers, it is at least 1×2×· · ·×n = p0n! ). So we need no further proof in these cases.

If the product is 1 we have x1x2 · · ·xn = 1; since the positive integers xk are all
different, there must be just one of them. So x1 = 1, n = 1, and we have already noted
that the result is true in this case. Thus we have proved the basis of the induction.

Now consider a case where the product x1x2 · · ·xn is greater than 1, and assume that
we already know the result is true for all smaller products. The integers xk satisfy

x1 < x2 < · · · < xn < 2x1 ;

this implies

x2 ≥ x1 + 1 , x3 ≥ x1 + 2 , . . . , xn ≥ x1 + (n− 1) , 2x1 ≥ x1 + n

and so x1 ≥ n. Suppose that x1x2 · · ·xn is a multiple of ps, with s > 0. Then some or all
of the xk will be multiples of p. Denote those that are multiples of p by py1, py2, . . . , pym,
in increasing order, and those that are not by z1, z2, . . . , zn−m (there may in fact be none
of the zs). Observe that

(py1)(py2) . . . (pym) z1z2 . . . zn−m = x1x2 · · ·xn
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because the n integers on the left hand side are exactly the same as the n integers on
the right hand side, though possibly in a different order. Now consider the numbers
y1, y2, . . . , ym. We have

y1y2 · · · ym =
x1x2 · · ·xn

pmz1z2 · · · zn−m

< x1x2 · · ·xn ;

so the product of the ys is smaller than the product of the xs, and we therefore know
that the result under consideration is true for the ys. Moreover,

x1 ≤ py1 < py2 < · · · < pym ≤ xn < 2x1 ≤ 2py1

and so
y1 < y2 < · · · < ym < 2y1 ;

also ps−m is a factor of y1y2 · · · ym; and hence

y1y2 · · · ym ≥ ps−mm! .

It follows that
x1x2 · · ·xn ≥ ps m! z1z2 · · · zn−m .

Finally, the zs are all different, and every zk satisfies zk ≥ x1 ≥ n; and m ≤ n; so the
expression

m! z1z2 · · · zn−m = (1)(2) · · · (m)z1z2 · · · zn−m

is a product of n different positive integers, and therefore

x1x2 · · ·xn ≥ psn! .

The proof is complete.

Q1615

(a) Show that it is possible to choose a point O inside a square and to draw three rays
from O, all separated by equal angles, in such a way that the square is divided
into three regions of equal area.

(b) Show that in (a), the point O cannot be the centre of the square.

SOLUTION Let the side of the square be 1, so that we are looking for three regions
of area 1

3
each. Place the point O on a diagonal of the square, very close to one corner,

with one of the rays extending to the opposite corner (and the others spaced at angles
of 120◦ as required) – see the first diagram.

O

O
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Then the shaded area is very small, certainly less than 1
3
. Now gradually move the

point O up the diagonal until it reaches the point shown in the second diagram: at this
stage the shaded area is clearly bigger than 1

2
. So, somewhere in between, this area

must be exactly 1
3
. The combined area of the other two regions is then 2

3
; and these two

regions are clearly congruent, so they also have area 1
3

each. This solves the problem.

Comments.

• It is unnecessary to find the actual location of O in order to answer the question!
However if you want to do so, this is not too hard and is left as an exercise. You
should find that the distance from O to the bottom left corner of the square is

√

3 +
√
3

3
.

• Another way to answer this question is to place O on the “mid–line” of the square,
near the bottom, and then gradually move it vertically upwards. The argument is
very similar to the one we have given.

For part (b), the three rays starting at O will meet the square in three points; so there
must be a side of the square which does not meet any of the rays, except perhaps at a
corner. If we draw this side as the top of the square and place O at the centre, it looks
like this.

O
A

B C D
E

The shaded area is divided into two trapezoids by the dotted line; since BC = CD =
OC = 1

2
, its area is

∆ =
1

2

AB +OC

2
+

1

2

OC + ED

2
=

AB + 1 + ED

4
. (∗)

Now let ∠AOC = 60◦ + θ; then ∠EOC = 60◦ − θ, and since A and E are on the vertical
sides of the square we have −15◦ ≤ θ ≤ 15◦. Now

AB = 1
2
− 1

2
tan(30◦ − θ) , DE = 1

2
− 1

2
tan(30◦ + θ) ;

by using the formula

tan(α + β) =
tanα + tanβ

1− tanα tan β

and the value tan 30◦ = 1√
3
, substituting back into (∗) and simplifying gives

∆ =
1

4

(

2−
√
3
1 + tan2 θ

3− tan2 θ

)

.
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Multiplying top and bottom of the fraction in this formula by cos2 θ then using the
identities cos2 θ + sin2 θ = 1 and cos2 θ − sin2 θ = cos 2θ, we have

1 + tan2 θ

3− tan2 θ
=

cos2 θ + sin2 θ

3 cos2 θ − sin2 θ
=

1

1 + 2 cos 2θ

and so

∆ =
1

4

(

2−
√
3

1 + 2 cos 2θ

)

.

Now the minimum value of the area occurs for the minimum value of cos 2θ; this is
when θ = ±15◦, and the minimum area is

∆min =
1

4

(

2−
√
3

1 +
√
3

)

=

√
3 + 1

8
.

Finally, noting that 3
√
3 =

√
27 >

√
25 = 5, the area of the shaded region satisfies

∆ ≥ ∆min =
3
√
3 + 3

24
>

5 + 3

24
=

1

3
.

Therefore the shaded area can never be 1
3
, and it is impossible to divide the square into

three regions of area 1
3

by means of three equally spaced rays meeting at the centre of
the square.

NOW TRY Problem 1621.

Q1616 Fourteen circular counters of identical size are available; 9 of them are red and
5 are blue. In how many ways can they be arranged into a stack of 14 counters, if there
cannot be more than 3 adjacent counters of the same colour?

SOLUTION Call a set of adjacent counters of the same colour a “stripe”. For example,
the arrangement RRRBBRRBRBBRRR has four red stripes and three blue stripes. The
number of red and the number of blue stripes must be the same, or must differ by 1. If
the numbers are the same, either colour can come first and there are two possibilities;
if they differ by 1, there is only one possibility. Now since there are nine red counters
with at most three in each stripe, there must be at least 3 red stripes and at least 2 blue
stripes; since there are five blue counters with at least one in each stripe, there are at
most 5 blue stripes and at most 6 red stripes. At this stage, the numbers of possibilities
for r red stripes and b blue stripes are as in the following table.

b = 2 3 4 5

r = 3 1 2 1 0

4 0 1 2 1

5 0 0 1 2

6 0 0 0 1

Now we must consider how many individual counters are in each stripe. For r = 3
red stripes, the only way to have a total of 9 red counters with a maximum of 3 in each
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stripe is to have 3 + 3 + 3. For r = 4 we could have 3 + 2 + 2 + 2, or any re-ordering of
these numbers: there are four possibilities. Alternatively we could have 3 + 3 + 2 + 1,
and there are 12 possibilities here (4 ways to choose the place to put the 1, then 3 ways
to choose the place to put the 2). So for r = 4 there are 16 possibilities altogether. For
r = 5 one of the possibilities is 3 + 2 + 2 + 1 + 1, and the number of possibilities is
30 (5 ways to place the 3, then

(
4

2

)
= 6 ways to place the 2s). The rest is left up to

you: completing the calculations for r = 5 you should find that the total number of
possibilities is 45, and the total for r = 6 is 50. Similarly, with five blue counters, the
numbers of possibilities for b = 2, 3, 4, 5 stripes are 2, 6, 4, 1 respectively. So we can
update the above table to show the total number of options in each case.

b = 2 3 4 5

r = 3 1× 1× 2 2× 1× 6 1× 1× 4 0

4 0 1× 16× 6 2× 16× 4 1× 16× 1

5 0 0 1× 45× 4 2× 45× 1

6 0 0 0 1× 50× 1

Now all we need is to do the multiplications and add up the figures in the table, giving
a final total of 578 possible arrangements.

Q1617 A dyadic fraction is a fraction in which the denominator is a power of 2, that
is, a fraction

s

2n

where s, n are integers and n ≥ 0.

(a) Show that the sum, difference and product of two dyadic fractions is always a
dyadic fraction.

(b) Find two dyadic fractions whose quotient is not a dyadic fraction.

Now let F be the set of all dyadic fractions,

F =
{ s

2n
s, n are integers with n ≥ 0

}

.

If a and b are specific numbers, then we write aF + b for the set of all numbers that can
be expressed as ax+ b, where x is in F . That is,

aF + b = { ax+ b | x is in F } .

(c) Let a and b be fractions in F . Prove that aF + b = F if and only if a is a power of 2,
that is, a = 2k for some integer k. (Note that k may be positive, negative or zero.)

Comment. In future issues we shall be presenting a series of problems about dyadic
fractions, leading to questions which have been found important in a current math-
ematical research project. We hope that readers will be interested to see that even
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advanced contemporary mathematics sometimes relies on arguments which are acces-
sible to school students.

SOLUTION Take two dyadic fractions x, y. We can write them as

x =
s1
2n1

, y =
s2
2n2

where s1, n1, s2, n2 are integers with n1, n2 ≥ 0. Then

x+ y =
2n2s1 + 2n1s2

2n1+n2

,

and this is a dyadic fraction because the numerator is an integer and the denominator
is a power of 2. For similar reasons,

x− y =
2n2s1 − 2n1s2

2n1+n2

and xy =
s1s2
2n1+n2

are dyadic fractions. This answers (a). There are many possible examples for (b). For
instance, let x = 3

2
and y = 5

4
. Then we can write

x =
3

21
, y =

5

22
,

x

y
=

6

5
;

so x and y are dyadic fractions, but x
y

is not since its denominator is not a power of 2.

To answer (c), let a and b be dyadic fractions. We have to prove firstly that if a is a
power of 2, then every fraction in the set aF + b is also in F , and conversely that every
fraction in F is also in aF + b. We write

a = 2k and b =
s2
2n2

.

Any element of aF + b can be expressed as ax + b, where x is a dyadic fraction; since
a and b are also dyadic fractions, part (a) shows that ax + b is a dyadic fraction and is
therefore in the set F . Conversely, if x is in F then we have

x =
s1
2n1

=
( s1
2n1

− s2
2n2

)

+ b = a
( 1

2k

( s1
2n1

− s2
2n2

))

+ b ;

and the expression in brackets is a product and difference of dyadic fractions, so by (a)
it is a dyadic fraction; hence x is in aF + b.

Finally, we have to show that if aF + b = F , where a, b are dyadic fractions, then a is a
power of 2. So let

a =
s

2n
.

Since b is a dyadic fraction, so is
1

2n
+ b ;
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that is, this number is in F , and hence is also in aF + b since this is the same set.
Therefore

1

2n
+ b = ax+ b

for some x in F . But this gives

x =
1

s
;

since x is a dyadic fraction, the denominator s is a power of 2; and therefore a = s/2n

is a power of 2. This completes the proof.

Comment. In mathematical terminology, a set of numbers within which we can add,
subtract and multiply in accordance with “sensible” rules is known as a ring . A set
within which we can add, subtract, multiply and divide is called a field . So (a) shows,
more or less, that the set F is a ring, while (b) shows that F is not a field. There is a
great deal that can be said about these concepts: you may learn some of it if you study
mathematics at university level.

NOW TRY Problem 1630.

Q1618 The points A,B,C are collinear, in that order. There is a circle on diameter AB
and a circle on diameter AC. A chord of the larger circle is parallel to AC and tangent
to the smaller circle; its length is 2x. Find the area of the region lying between the two
circles.

SOLUTION Let R be the radius of the larger circle and r the radius of the smaller. In
the diagram, O is the centre of the larger circle and M is the foot of the perpendicular
from O to the chord.

O

M N

r R

Since a chord of a circle is bisected by a perpendicular from the centre we have MN =
x; and by Pythagoras’ Theorem, x2 + r2 = R2. Therefore the area of the shaded region
is

πR2 − πr2 = πx2 .

Q1619 A sequence of numbers a0, a1, a2, a3, . . . satisfies the equation

an = an−1 + an−2 + λan−1an−2 for n = 0, 1, 2, . . . ,

where λ is a fixed non–zero real number. Find a formula for an in terms of the first two
values a0, a1.
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SOLUTION Multiply both sides of the given equation by λ and add 1, giving

λan + 1 = λan−1 + λan−2 + λ2an−1an−2 + 1 .

The right hand side now factorises and we have

λan + 1 = (λan−1 + 1)(λan−2 + 1) . (∗)

Writing x = λa0 + 1, y = λa1 + 1 and applying this equation, we find

λa2 + 1 = xy , λa3 + 1 = xy2 , λa4 + 1 = x2y3 , λa5 + 1 = x3y5

and so on. It is clear that λan + 1 will be a power of x times a power of y, say

λan + 1 = xsnytn .

Substituting back into (∗) we have

xsnytn = xsn−1ytn−1xsn−2ytn−2 = xsn−1+sn−2ytn−1+tn−2 .

Taking into account also the original definitions of x and y, we have

sn = sn−1 + sn−2 , s0 = 1 , s1 = 0 , tn = tn−1 + tn−2 , t0 = 0 , t1 = 1 .

Therefore the values of t are the Fibonacci numbers, tn = Fn. Since s1 = 0 and s2 = 1,
the s values are the Fibonacci numbers “delayed” by one step, sn = Fn−1. Therefore

λan + 1 = xFn−1yFn .

Solving for an and substituting the original expressions for x and y gives the formula

an =
xFn−1yFn − 1

λ
=

(λa0 + 1)Fn−1(λa1 + 1)Fn − 1

λ
.

Q1620 There are m boxes, each containing some beads. A positive integer n is spec-
ified, with n < m. You are allowed to choose any n of the m boxes and then add one
bead to each of the chosen boxes.

(a) Prove that if n and m have no common factor, then it is possible to perform this
operation, more than once if necessary, in such a way that all boxes end up with
the same number of beads.

(b) If n and m do have a common factor (greater than 1), find an initial distribution
of beads such that it is impossible for the above operation, no matter how many
times repeated, to result in all boxes containing the same number of beads.
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SOLUTION We begin with an important result from the mathematical topic of number
theory . If you are already familiar with this result, you can skip past it.

Theorem. Let m and n be positive integers which have no common factor (except 1).
Then there is a positive integer k such that when kn is divided by m, the remainder
is 1.

Proof. Consider the numbers n, 2n, 3n, . . . , mn, and find the remainders when these
numbers are divided by m. First note that all these remainders are different: for if k1n
and k2n have the same remainder, then subtracting them cancels out the remainder, so
that m is a factor of (k1 − k2)n. But since m and n have no common factor, m must be
a factor of k1 − k2; and this is impossible as k1, k2 are numbers from 1 to m and their
difference must be less than m.

So, if the m numbers n, 2n, 3n, . . . , mn are divided by m, they have m different re-
mainders; and there are only m possible remainders, namely 0, 1, 2, . . . , m− 1; so each
remainder must occur once. In particular, one of the remainders must be 1, and this is
what we wanted to prove.

Returning to the solution of our problem, let k be a number such that kn divided by
m leaves remainder 1, say kn = 1 + tm. Place the m boxes in a circle, start with any
box you like and go round and round the circle, placing one bead in each box until
you have placed kn beads. This is within the rules of the problem, as it is the same as
choosing n boxes and putting a bead in each, k times. And since there are m boxes,
the result is that we will have gone around the circle t times, putting t beads into every
box, and one extra in the first box. Thus we can increase the number of beads in any
box we like by 1, relative to all the others. And if we do this a sufficient number of
times, choosing as our first box any box which has less than the maximum number of
beads, we shall eventually “level up” all the boxes to the same number of beads.

To answer (b), let m and n have a common factor d > 1. Start with one bead in one box
and none in all the others. Then if we perform the allowed operation k times, the total
number of beads in the boxes will be kn+ 1; if the boxes then contain t beads each, the
total number of beads will be tm; and these numbers are incompatible, as the latter is
a multiple of d and the former isn’t. Thus it is impossible to get the same number of
beads in every box.
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