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Brute Force Learning in Sequential Games
Eric Gao1

1 Introduction

Much work has been done in investigating games of imperfect or incomplete infor-
mation. This paper analyzes a different conceptualization of not fully knowing how a
game operates, where the player knows possible payoffs and their possible moves but
does not know the mechanism of the game. We then analyze how learning may occur
wherein the player formulates an idea of how the game mechanism assigns payoffs
based on the player’s move without actually knowing more about the mechanism of
how the game works. Thus, instead of acquiring more information about the mecha-
nism of the game, an actor only gets better at guessing their way through each repeti-
tion based on their knowledge of prior results.

We now look at related work in the existing literature. The game in consideration in
this paper is similar to a multi-armed bandit problem,2 except that each of the results
is deterministic (W in or Lose) instead of a probability to win. However, the game
under consideration requires the player to make multiple decisions before receiving
any payoff, motivating the approach used in this paper.

Sandomirskiy [8] considers repeated zero sum games with one player only having
incomplete information. Before play starts, the type of zero sum game is selected by
chance from a class of almost-fair games with the game chosen only known by player
one. Under certain conditions, the total payoff to player two for a large number of repe-
titions n is directly proportional to

√
n, while under other conditions of the games con-

sidered, the payoff is asymptotically constrained instead. Although the game model
utilized in this paper is different, the result that learning progression converges to a
certain payoff holds.

Valluri [9] applies a similar reinforcement-based learning algorithm to a two player
sequential prisoners’ dilemma game and finds that in simulations, agents eventually
learn to cooperate. Similarly, Littman [5] shows convergence to Nash equilibrium
given conditions of existence as well as assumptions about the type of play an op-
ponent uses (friend or foe). While the exact situations are slightly different, both afore-
mentioned papers involve an agent getting better at playing given an uncertain payoff
function. The learning mechanism proposed in this paper, however, is more direct and
does not rely on remembering states or opponents’ previous moves. For an overall

1Eric Gao is a rising Senior at Northwood High School in Irvine, California (eric.boxuan.gao@
gmail.com).

2For a review of work done on the multi-armed bandit problem, see Mahajan and Teneketzis [6].

1

eric.boxuan.gao@gmail.com
eric.boxuan.gao@gmail.com


review on reinforcement learning and its applications in game theory, see Chapter 14
of Now, Vrancx, and De Hauwere [7].

Finally, behavioral models of learning in games similarly focus on two-player games
and how an agent responds to the actions of other player(s) instead of to the game
mechanism itself.3 Experimentally, while two player games do not always converge to
Nash equilibria, studies such as Van Huyck, Battalio, and Beil [4] have shown that as
play goes on through multiple iterations of the same game, agents get better and better
at predicting game dynamics.

Slightly different from the rich literature concerning models of learning in games,
this paper shows how even a computationally simple mechanism can result in conver-
gence given a sufficiently straightforward game.

2 A Basic Game

2.1 Model

We consider a single player, three turn game. In the first and second turns, the player
has three choices of what to move. From the player’s point of view, they do not know
what happens after each move due to not knowing the mechanism of how the game
works, but the player can still differentiate between the moves. To the player, the game
propagates as such:

move→ some indeterminate thing the game mechanism does→ result ,

with the player being unsure of whether or not the result is uniquely determined by
their move or by the game. However, observers know that of the three moves, one
move leads to the player winning (W ), one move leads to them losing (L), and the
final move leads to the game going on to the next decision (C). If the game reaches
the third turn, the player then has two choices (once again, the player can differentiate
between the two moves but does not know the outcome of the moves), one leading to
a win and the other to a loss.

As the player does not know the outcome of their choices in the beginning, they
have no choice but to guess and play randomly, making adjustments to their strategy
as they repeatedly play the game. Then, the probability the player obtains a particular
result from the move they chose can thus be denoted as:

Xr
i ∈ [0, 1]

where X ∈ {W,L,C} denotes the outcome of the player’s move, r denotes the rth
round the player is currently playing, and i ∈ {1, 2, 3} the ith move in the current
round. When i = 3, X ∈ {W,L} as there is no continuation of the game.

3For a survey of both passive and active learning, see Fudenberg and Levine [2].
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This game can also be represented as the following directed graph for someone who
has perfect information about how the game works, where D represents an opportu-
nity for the player to make a decision:

Figure 1: Perfect Information Point of View
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However, to the player who does not have perfect information, the game appears
as such:

Figure 2: Player’s Point of View

D

???

L

???

W

???

D

???

L

???

W

???

D

???

W

???

L

A1 A2
A3

B1 B2
B3

C1 C2

The probability of winning in round r can then be expressed as:

P (r) = W r
1 + Cr

1 [W r
2 + Cr

2W
r
3 ] . (1)

Players “learn” through successive iterations of this game due to them knowing
the outcome of previous attempts, even if they are oblivious to the mechanism that
dictates the result of the game. Let n ∈ [0, 1] be a real number representing the player’s
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willingness to learn and adapt, where smaller n means a higher propensity to change
their move based on previous results, and vice versa for higher n.

The value n = 1 trivially results in no learning happening; going forward, we will
assume that n ∈ [0, 1) instead. In the case n = 0 (perfect learning), once a player wins,
they would keep playing the same strategy over and over when repeatedly playing the
game. However, it becomes much more interesting in the imperfect case with n > 0.

Now, we consider the effects of learning based on the current iteration of the game
on the next iteration of the game by analyzing the change in the probabilities to win (1).
When a player wins (W r

1 ,W
r
2 ,W

r
3 ), they play the same move with a higher probability

when they play the next iteration of the game, which also results in a decrease in the
probabilities of the other moves. If a player loses in the current game (Lr1, Lr2, Lr3), they
play the move immediately before the loss with a lower probability, which results in
an increase in the probabilities of the other moves. If a player’s move results in the
game continuing (Cr

1 , C
r
2), then nothing changes to probabilities at that decision node.4

Due to there being multiple possible outcomes of the current game, what happens in
the following iteration of the game is thus broken up into multiple cases. Furthermore,
due to the decision space being different between the first two moves and the third
move, those two cases need to be treated separately as well.

Moves 1 and 2 (i ∈ 1, 2)

Xr
i = W : Lr+1

i = nLri = Lri + (n− 1)Lri
Cr+1
i = nCr

i = Cr
i + (n− 1)Cr

i

W r+1
i = W r

i + (1− n)(1−W r
i )

Xr
i = L : Lr+1

i = nLri = Lri + (n− 1)Lri
Cr+1
i = Cr

i +
Cr

i

1−Lr
i
(1− n)(Lri )

W r+1
i = W r

i +
W r

i

1−Lr
i
(1− n)(Lri )

Xr
i = C : W r+1

i = W r
i

Lr+1
i = Lri

Cr+1
i = Cr

i

Move 3 (i = 3)

Xr
i = L : Lr+1

i = nLri
W r+1
i = W r

i + (1− n)(1−W r
i )

Xr
i = W : Lr+1

i = nLri
W r+1
i = W r

i + (1− n)(1−W r
i )

4However, note that there inevitably will be either a W or L move played; continuing the game just
results in the change of move probabilities occurring at a later stage.
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2.2 Preliminary Results

We now derive two results from our game and learning process.

Theorem 1 (Eventual Perfection). Brute force learning based on the model defined in Sec-
tion 2 eventually converges to perfect play for all n ∈ [0, 1) and X1

i > 0 for all X ∈ {W,C,L}
and i ∈ {1, 2, 3}. That is, lim

r→∞
E(P (r)) = 1 where E denotes expected value.

Lemma 2. P (r) is strictly increasing in r.

Proof. Note that for each i the sequence Xr
i is discrete, only defined when r ∈ Z+.

We first reconfigure the sequence to make Xr
i a continuous function. Observe how

Xr+1
i takes the form Xr

i + ∆(X) for each X , where ∆(X) = Xr+1
i − Xr

i . Now, define
Xr+ε
i = Xr

i + ε∆(X) where ε ∈ [0, 1]. This function “connects the dots” between each
discrete value of r: Xr+ε

i = Xr
i when ε = 0 and Xr+ε

i = Xr+1
i when ε = 1.

This new function is continuous in all r ∈ R+ and is differentiable when r /∈ Z+.
The derivative of Xr

i is then:

dXr
i

dr
= lim

ε→0

Xr+ε
i −Xr

i

ε
= lim

ε→0

Xr
i + ε∆(X)−Xr

i

ε
= ∆(X)

for each r /∈ Z+. We then have:

dP (r)

dr
=

d

dr

(
W r

1 + Cr
1

(
W r

2 + Cr
2(W r

3 )
))

=
dW r

1

dr
+
(
W r

2 + Cr
2(W r

3 )
)dCr

1

dr
+ Cr

1

(dW r
2

dr
+ Cr

2

dW r
3

dr
+W r

3

dCr
2

r

)
=
dW r

1

dr
+ (W r

2 + Cr
2W

r
3 )
dCr

1

dr
+ Cr

1

dW r
2

dr
+ Cr

1C
r
2

dW r
3

dr
+ Cr

1W
r
3

dCr
2

dr
. (2)

Next, we consider each of the six different paths the game can take

W1 , L1 , C1 → W2 , C1 → L2 , C1 → C2 → W3 , C1 → C2 → L3

and apply (2) and show that, in each case, dP (r)
dr
≥ 0. Before starting to work through

each case, take note that

1 = W r
1 + Lr1 + Cr

1

(
W r

2 + Lr2 + Cr
2(W r

3 + Lr3)
)

= W r
1 + Lr1 + Cr

1W
r
2 + Cr

1L
r
2 + Cr

1C
r
2W

r
3 + Cr

1C
r
2L

r
3 ,

Thus, the sum of any proper subset of terms on the far right hand side must be less
than 1, from our assumption that X1

i > 0 for all X ∈ {W,L,C}.
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Case 1: W1

dP (r)

dr
=
dW r

1

dr
+ (W r

2 + Cr
2W

r
3 )
dCr

1

dr
+ Cr

1

dW r
2

dr
+ Cr

1C
r
2

dW r
3

dr
+ Cr

1W
r
3

dCr
2

dr
= (1− n)(1−W r

1 ) + (W r
2 + Cr

2W
r
3 )(n− 1)Cr

1 + Cr
1(0) + Cr

1C
r
2(0) + Cr

1W
r
3 (0)

= (1− n)
(
1− (W r

1 + Cr
1W

r
2 + Cr

1C
r
2W

r
3 )
)
.

From our previous observation, W r
1 + Cr

1W
r
2 + Cr

1C
r
2W

r
3 < 1. Also, 1 − n > 0, so

1− (W r
1 + Cr

1W
r
2 + Cr

1C
r
2W

r
3 ) > 0; therefore, dP (r)

dr
> 0 in this case.

Case 2: L1

dP (r)

dr
=
dW r

1

dr
+ (W r

2 + Cr
2W

r
3 )
dCr

1

dr
+ Cr

1

dW r
2

dr
+ Cr

1C
r
2

dW r
3

dr
+ Cr

1W
r
3

dCr
2

dr

=
W r

1

1− Lr1
(1− n)Lr1 + (W r

2 + Cr
2W

r
3 )

Cr
1

1− Lr1
(1− n)Lr1 + 0 + 0 + 0

=
(1− n)Lr1

1− Lr1
(W r

1 + Cr
1W

r
2 + Cr

1C
r
2W

r
3 ) ≥ 0

as n ∈ [0, 1] and Lr1 ∈ (0, 1).

Case 3: C1 → W2

dP (r)

dr
=
dW r

1

dr
+ (W r

2 + Cr
2W

r
3 )
dCr

1

dr
+ Cr

1

dW r
2

dr
+ Cr

1C
r
2

dW r
3

dr
+ Cr

1W
r
3

dCr
2

dr
= 0 + (W r

2 + Cr
2W

r
2 )× 0 + Cr

1(1− n)(1−W r
2 ) + 0 + Cr

1W
r
3 (n− 1)Cr

2

= Cr
1(1− n)

(
1− (W r

2 + Cr
2W

r
3 )
)
> 0 .

Case 4: C1 → L2

dP (r)

dr
=
dW r

1

dr
+ (W r

2 + Cr
2W

r
3 )
dCr

1

dr
+ Cr

1

dW r
2

dr
+ Cr

1C
r
2

dW r
3

dr
+ Cr

1W
r
3

dCr
2

dr

= 0 + (W r
2 + Cr

2W
r
3 )× 0 + C1(

W r
2

1− Lr2
(1− n)Lr2) + 0 + Cr

1W
r
3

Cr
2

1− Lr2
(1− n)Lr2

=
Cr

1L
r
2(1− n)

1− L2

(W r
2 + Cr

2W
r
3 ) > 0 .

Cases 5–6: C1 → C2 → W3 or L3
5

dP (r)

dr
=
dW r

1

dr
+ (W r

2 + Cr
2W

r
3 )
dCr

1

dr
+ Cr

1

dW r
2

dr
+ Cr

1C
r
2

dW r
3

dr
+ Cr

1W
r
3

dCr
2

dr
= 0 + (W r

1 + Cr
2W

r
3 )× 0 + 0 + Cr

1C
r
2(1− n)(1−W r

3 ) + 0

= Cr
1C

r
2(1− n)(1−W r

3 ) > 0 .

2

5We combine these two cases due to the change occurring in step three of the game being the same
regardless of win or loss.
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Now, given the appropriate tools, Theorem 1, the type of brute force learning iden-
tified in this paper eventually reaches perfect play, can finally be proven.

Proof. If an action on move 1 of round r results in a win, then call that action a move
of type I . Let Jr be the subset of the first r repetitions of the game such that a type I
move is played for all i ∈ Jr.

Next, if there are j moves of type I in the first r repetitions of the game, then denote
that to be event Er

j .
Then, define two random variables on the events Er

0 , E
r
1 , E

r
2 , . . . , E

r
r :

• W r+1
1 (Er

j ) is the probability the player plays the move W r+1
1 after r repetitions of

the game with j moves of type I in the first r rounds.

• Υr is the number of moves of type I in the first r rounds. Note that Υr(Er
j ) = j.

Finally, let Φr be the binomial random variable with r trials and W 1
1 probability of

success in each trial. Then,

E(Υr) =
r∑
j=1

jP (j = |Jr|) ≥
r∑
j=1

j

(
r

j

)
W 1

1 = E(Φr) = rW 1
1

as W r
1 is strictly non-decreasing. Also,

W r+1
1 ≥ W 1

1 +
∑
i∈Jr

(1− n)(1−W i
1)

≥ W 1
1 +

∑
i∈Jr

(1− n)(1−W r
1 )

= W 1
1 + (1− n)(1−W r

1 )
∑
i∈Jr

1

as 1 −W i
1 ≥ 1 −W r

1 for all i and since (1 − n)(1 −W r
1 ) is independent of i. Taking the

expected value of both sides yields

E(W r+1
1 ) ≥ E

(
W 1

1 + (1− n)(1−W r
1 )|Jr|

)
= W 1

1 + (1− n)
(
1− E(W r

1 )
)
E(Υr)

≥ W 1
1 + (1− n)

(
1− E(W r

1 )
)
rW 1

1 .

Since E(W r
1 ) is a non-decreasing sequence bounded above, lim

r→∞
E(W r

1 ) exists. Call it L.
We then have

L ≥ W 1
1 + (1− n)(1− L)rW 1

1

and, therefore,

L ≥ W 1
1 + (1− n)rW 1

1

1 + (1− n)rW 1
1

.

As the right hand side approaches 1 as r →∞, the expected value of W r
1 approaches 1

as well. Recalling (1), we have the desired result. 2
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Theorem 3 (Introspection). It is strictly better to blame yourself rather than the game mech-
anism to learn faster; that is, learning happens faster when n→ 0.

Proof. Notice that for Cases 1–6, dP (r)
dr

can be expressed in the form

dP (r)

dr
= (1− n)ϑ(W r

1 , L
r
1, C

r
1 ,W

r
2 , L

r
2, C

r
2 ,W

r
3 , L

r
3)

where ϑ(W r
1 , L

r
1, C

r
1 ,W

r
2 , L

r
2, C

r
2 ,W

r
3 , L

r
3) is a strictly positive function of choice proba-

bilities at every step. Therefore,

∂

∂n

[
dP (r)

dr

]
=

∂

∂n
[(1− n)ϑ(W r

1 , L
r
1, C

r
1 ,W

r
2 , L

r
2, C

r
2 ,W

r
3 , L

r
3)]

= −ϑ(W r
1 , L

r
1, C

r
1 ,W

r
2 , L

r
2, C

r
2 ,W

r
3 , L

r
3) ≤ 0 .

Thus, it is seen that as n decreases, dP (r)
dr

increases. 2

2.3 Simulations of a Basic Game

We simulate the game and observe how the probability of each decision propagates
through each iteration of the game. For each graphed result, we use initial values
W 1

1 = L1
1 = C1

1 = 1
3
, W 1

2 = L1
2 = C1

2 = 1
3
, and W 1

3 = L1
3 = 1

2
, while the value for n varies.

The results are as follows:
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Thus, the reader can easily see that in each of the cases, W1, W2, and W3, as well as
W ∗, the overall probability of winning the game, are strictly increasing. Similarly, as
n decreases, the number of repetitions of the game it takes to reach near perfect play
W ∗ > 0.9 also decreases.

3 Generalizations

3.1 General Definitions

Having analyzed how play propagates in the original basic game, we now define the
general class of games under consideration and generalize the learning mechanism to
incorporate a richer variety of situations.

Definition 4 (Simple Sequential Game). A Simple Sequential Game G can be defined as
follows. Let D = {d1, d2, . . . , dn} be a nonempty, finite set of elements called decision
nodes. We call d1 the initial decision node. There exists a non-empty subset of D made
up of terminal decision nodes. For each decision node dj ∈ D, there is a nonempty
finite set Aj that represent the set of actions available at that decision node.

There is a function O defined on the set of all possible actions with the following
properties:
• for each non-terminal decision node dj and each action a ∈ Aj , the outcome O(a)

is either W , L, or C, with at least one action mapped to each outcome;

• for each action a ∈ Aj with O(a) = C, there exists a “next node” dk with k > j
such that no nodes/actions can share the same “next node”;

• for each terminal decision node d` and each action a ∈ A`, the outcome O(a) is
either W or L, with at least one action mapped to each outcome.

There is a single player in this game who
• knows when they are at a decision node dj and can differentiate between decision

nodes;

• can differentiate between actions {a1, a2, . . . , ai} ∈ Aj ;
• does NOT know the mapping O between actions and outcomes, but does know

that the possible outcomes of the each move are {W, L, C} and that the game
ends in either W or L;

• strictly prefers W to L.

This finishes the definition of a Simple Sequential Game.

We also define a path Pj from initial decision node d1 to the decision node dj to
be a set of decision nodes {d1, di1 , di2 , . . . , dik , dj} with 1 < i1 < i2 < . . . < ik and
actions {a1, ai1 , ai2 , . . . , aik , aj} satisfying O(am) = C for all m ∈ {1, i1, i2, . . . , ik}
and O(aj) ∈ {W,L}. Each decision node in the list (except d1) is the next node for the
previous node and action. Let Aj be the set of actions in the path Pj .

One can see that the game defined in Section 2.2 is a Simple Sequential Game.
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Remark 5. The definition used for a Simple Sequential Game generates a subset of extensive
form games.

Based on the definition of an extensive form game introduced in Brihaye et al. [1], is
easy to see that a Simple Sequential Game has a set of players N with |N | = 1, a finite
action profile A, and a non-empty set of outcomes O. Noticing that the game only
continues if the outcome corresponding to the player’s move at any decision node is
C leads to the conclusion that, for every node, it is possible to trace a path of Cs to the
very first decision node. Similarly, for all non-terminal nodes, the one player playing
the game is always the one making the moves, while the mapping O in Definition 4
associates an outcome with every action at any terminal node. Lastly, among the two
outcomes, the preference ordering for the player is W � L.6

Definition 6 (Brute Force Learning Mechanism). A Brute Force Learning Mechanism M
for playing Simple Sequential Games can be defined as the triple 〈G, n, I〉where

• G represents a Simple Sequential Game;

• n ∈ [0, 1) represents the agent’s disposition against learning (inertia of the status
quo; smaller n correlates to more drastic learning and vice versa);

• I represents the initial probability of playing each move7. Letting I(ai) denote the
initial probability of playing move ai, I must satisfy

∑
ai∈Aj

I(ai) = 1 for all dj ∈ D.

In this new general form of the learning mechanism, let p(a) be the probability of
playing move a. The learning mechanism M is then a function with decision node dj ,
move played a∗, and probabilities p(a) that correspond to each of the moves a ∈ Aj
that outputs new probabilities p′(a) (that once again, correspond to each of the moves
a ∈ Aj). Similar to Section 2.2, we now work through each of the cases based on the
outcome of the game stemming from the move chosen.

Case One: O(a∗) = W

p′(a) =


np(a) = p(a)− (1− n)p(a) , a ∈ Aj \ {a∗}
p(a∗) +

∑
a∈Aj\{a∗}

(1− n)p(a) , a = a∗

The current repetition of the game ends here.

Case Two: O(a∗) = L

p′(a) =

p(a) +
p(a)

1− p(a∗)
(1− n)p(a∗) , a ∈ Aj \ {a∗}

np(a∗) = p(a∗) + (n− 1)p(a∗) , a = a∗

The current repetition of the game ends here.
6The difference between a Simple Sequential Game and a perfect information extensive form game

is that the player in this game does not know the mapping O from actions to outcomes.
7Think of this as the initial conditions.
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Case Three: O(a∗) = C

p′(a) = p(a) for all a ∈ Aj .

And the game now moves onto a new node dk
8, in which the learning mechanism

follows the same algorithm at that new node.

It is easy to see that the learning mechanism defined in Section 2.1 is a Brute Force
Learning Mechanism. This finishes the definition of Brute Force Learning Mechanisms.

Remark 7. A Brute Force Learning Mechanism M has the Markov property of the (r + 1)th
iteration of the game being dependent on only the rth iteration; the history of learning does not
matter when determining how the game propagates.

3.2 Generalized Theorems

We now generalize the two theorems presented in Section 2.2 to all Simple Sequen-
tial Games with a Brute Force Learning Mechanism. For future reference, let P (G, r)
denote the probability of winning Simple Sequential Game G in the rth repetition.

Theorem 8. (Stronger Eventual Perfection) Any Brute Force Learning Mechanism M will
eventually converge to perfect play given any Simple Sequential Game G given nonzero initial
probabilities to play each move and n ∈ [0, 1). That is, lim

r→∞
P (G, r) = 1.

Lemma 9. P (r) is strictly increasing in r for all Simple Sequential Games.

Proof. Let P (G, r + 1|O(ar) ∈ {W,L}) denote the probability of winning the game in
the r + 1th repetition given that the terminal action ar in the rth repetition resulted in
either a win or a loss. By definition, any actions that result in a continuation of the
game do not result in a change in p(a) for any a ∈ Aj and thus only terminal actions
need to be considered.

Starting off, note that the probability to win is equal to the summation over all
decision nodes of the probability to get to a certain node multiplied by the probability
to win at that node:

P (G, r) =
∑
d∈D

(∏
a∈Ad

p(a)
∑

a∈Ad :O(a)=W

p(a)

)
.

Now, let Sd∗ denote the decision nodes in the subgame that lie on a path starting at
decision node d∗. Note that every possible outcome only changes the move probabil-
ities at a specific decision node. Now, let d∗ denote any specific decision node and
P (G, r, d∗) denote the probability of winning the subgame starting at d∗. Let n(a, d∗)
denote the decision node reached after choosing action a at node d∗ where O(a) = C.
Now, P (G, r) can be expressed as the summation of the probability to win over all

8k 6= j + 1 as dj could have multiple actions that result in the continuation of the game.

11



nodes not in the subgame Sd∗ plus the probability to reach the subgame Sd∗ multiplied
by the probability to win in the subgame. For some arbitrary fixed d∗ ∈ D, we have:

P (G, r) =
∑

d∈D\Sd∗

( ∏
a∈Ad

p(a)
∑

O(a)=W

p(a)

)

+
∏
a∈Ad∗

p(a)

( ∑
a∈Ad :O(a)=W

p(a) +
∑

a∈Ad :O(a)=C

p(a)P
(
G, r, n(a, d∗)

))
.

Then, letting ar ∈ Ad∗ be the move played in the rth repetition,9

P (G, r + 1|ar) =
∑

d∈D\Sd∗

( ∏
a∈Ad

p(a)
∑

O(a)=W

p(a)

)

+
∏
a∈Ad∗

p(a)

( ∑
a∈Ad :O(a)=W

p′(a) +
∑

a∈Ad :O(a)=C

p′(a)P
(
G, r, n(a, d∗)

))
.

as the probabilities to win in decision nodes not in the subgame remain unchanged.
We now want to show that P (G, r + 1|ar)− P (G, r) > 0. Note that both P (G, r + 1|ar)
and P (G, r) share the same first term which can be canceled out, leaving the inequality

P (G, r + 1|ar)− P (G, r)

=
∏
a∈Ad∗

p(a)

( ∑
a∈Ad :O(a)=W

p′(a) +
∑

a∈Ad :O(a)=C

p′(a)P
(
G, r, n(a, d∗)

))

−
∏
a∈Ad∗

p(a)

( ∑
a∈Ad :O(a)=W

p(a) +
∑

a∈Ad :O(a)=C

p(a)P
(
G, r, n(a, d∗)

))
> 0 .

Based on the initial conditions, p(a) 6= 0 for all a; this means that
∏

a∈Ad∗
p(a) 6= 0, so

dividing that factor from both sides yields∑
a∈Ad :O(a)=W

p′(a) +
∑

a∈Ad :O(a)=C

p′(a)P (G, r, n(a, d∗)
)

−
( ∑
a∈Ad :O(a)=W

p(a) +
∑

a∈Ad :O(a)=C

(
p(a)P

(
G, r, n(a, d∗)

)))
> 0 . (3)

Now, we go into each of the two cases based on the outcome of the game from
playing ar and substitute in the values of p′(a) based on Definition 3.1.

9This is a general case before even considering what O(ar) is; that will be done shortly.
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Case One: O(ar) = W∑
a∈Ad :O(a)=W

p′(a) +
∑

a∈Ad :O(a)=C

p′(a)P
(
G, r, n(a, d∗)

)
=

∑
a∈Ad\{ar} :O(a)=W

(
p(a)− (1− n)p(a)

)
+ p(ar) +

∑
a∈Ad∗\{ar}

(1− n)p(a)

+
∑

a∈Ad :O(a)=C

np(a)P
(
G, r, n(a, d∗)

)
=

∑
a∈Ad\{ar} :O(a)=W

p(a)−
∑

a∈Ad\{ar} :O(a)=W

(1− n)p(a) + p(ar) +
∑

a∈Ad\{ar} :O(a)=W

(1− n)p(a)

+
∑

a∈Ad :O(a)=L

(1− n)p(a) +
∑

a∈Ad :O(a)=C

(1− n)p(a) +
∑

a∈Ad :O(a)=C

np(a)P
(
G, r, n(a, d∗)

)
=

∑
a∈Ad :O(a)=W

p(a) +
∑

a∈Ad :O(a)=L

(1− n)p(a) +
∑

a∈Ad :O(a)=C

p(a)
(
1 + n(P

(
G, r, n(a, d∗)

)
− 1)

)
. (4)

Substituting (4) into (3) and canceling terms results in the following expression for
the left-hand side of (3):∑
a∈Ad :O(a)=L

(1− n)p(a) +
∑

a∈Ad :O(a)=C

p(a)
(
1 + n

(
P
(
G, r, n(a, d∗)

)
− 1
))
−
∑

a∈Ad :O(a)=C

p(a)P
(
G, r, n(a, d∗)

)
= (1− n)

( ∑
a∈Ad :O(a)=L

p(a) +
∑

a∈Ad :O(a)=C

p(a)
(

1− P
(
G, r, n(a, d∗)

)))

which is clearly greater than 0, as n < 1, p(a) > 0, and P
(
G, r, n(a, d∗)

)
< 1.

Case Two: O(ar) = L∑
a∈Ad :O(a)=W

p′(a) +
∑

a∈Ad :O(a)=C

p′(a)P
(
G, r, n(a, d∗)

)
=

∑
a∈Ad :O(a)=W

(
p(a) +

p(a)

1− p(ar)
(1− n)p(ar)

)
+

∑
a∈Ad :O(a)=C

(
p(a) +

p(a)

1− p(ar)
(1− n)p(ar)

)
P
(
G, r, n(a, d∗)

)
=

∑
a∈Ad :O(a)=W

p(a) +
∑

a∈Ad :O(a)=W

p(a)

1− p(ar)
(1− n)p(ar) +

∑
a∈Ad :O(a)=C

p(a)P
(
G, r, n(a, d∗)

)
+

∑
a∈Ad :O(a)=C

p(a)

1− p(ar)
(1− n)p(ar)P

(
G, r, n(a, d∗)

)
. (5)

13



Similarly, we now substitute (5) into (3) and cancel terms to find the left-hand side of (3):∑
a∈Ad :O(a)=W

p(a)

1− p(ar)
(1− n)p(ar) +

∑
a∈Ad :O(a)=C

p(a)

1− p(ar)
(1− n)p(ar)P

(
G, r, n(a, d∗)

)
= (1− n)

( ∑
a∈Ad :O(a)=W

p(a)

1− p(ar)
p(ar) +

∑
a∈Ad :O(a)=C

p(a)

1− p(ar)
p(ar)P

(
G, r, n(a, d∗)

))
which is positive.

Since d∗ is arbitrary, it is shown that no matter what happens in the rth repetition
of the game, P (G, r + 1) > P (G, r). 2

Now, we use logic similar to that of Theorem 2.1 to prove that the probability to
win converges to 1.
Proof. Unlike in Section 2, the probability to play each individual winning move is
not strictly increasing, as playing a winning move decreases the probability to play all
other moves, even if some other moves are winning. Instead, we look at the overall
probability to win,

∑
a∈Ad :O(a)=W P (a).

First, we show that the probability to play a winning move on turn one is strictly
increasing. It is easy to see how if the move played on turn one results in a loss, the
overall probability to win in turn one increases (as the probability of every individual
winning move increases) while if the game continues onto move two, the probability to
win remains unchanged. Now, consider if the move played a∗ in the first move results
in a win:∑

a∈Ad :O(a)=W

p′(a) = p′(a∗) +
∑

a∈Ad\{a∗} :O(a)=W

p′(a)

= p(a∗) +
∑

a∈Ad\{a∗}

(1− n)p(a) +
∑

a∈Ad\{a∗} :O(a)=W

(
p(a)− (1− n)p(a)

)
= p(a∗) +

∑
a∈Ad\{a∗} :O(a)=W

p(a) +
∑

a∈Ad :O(a)6=W

(1− n)p(a)

=
∑

a∈Ad :O(a)=W

p(a) +
∑

a∈Ad :O(a)6=W

(1− n)p(a)

>
∑

a∈Ad :O(a)=W

p(a)

as 1 − n and p(a) are both strictly positive. Once again, let a type I move be one that
results in a win in round 1 and Jr be the set of repetitions in which a type I move is
played. If there are j moves of type I in the first r repetitions of the game, denote that
to be event Er

j .
Then, define two random variables on the events Er

0 , E
r
1 , E

r
2 , . . . , E

r
r :

• Sr+1
1 (Er

j ) is the probability that the player plays a winning move in the first move
of round r + 1 after r game moves, of which j were of type I .

• Υr is the number of moves of type I in the first r rounds. Note that Υr(Er
j ) = j.
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Finally, let Φr be the binomial random variable with r trials and w :=
∑

a∈A1 p(a) prob-
ability of success in each trial where Ai is the set of all actions a in the first move of the
ith round of a given game with outcome O(a) = W . Then,

E(Υr) =
r∑
j=1

jP (j = |Jr|) ≥
r∑
j=1

j

(
r

j

) ∑
a∈W 1

p(a) = E(Φr) = rw

as
∑
a∈W 1

p(a) is strictly non-decreasing. Also,

Sr+1 =
∑
a∈W r

p(a) ≥ w +
∑
i∈Jr

(
(1− n)

(
1−

∑
a∈W i

p(a)
))

≥ w +
∑
i∈Jr

(1− n)
(

1−
∑
a∈W r

p(a)
)

= w + (1− n)
(

1−
∑
a∈W r

p(a)
)
|Jr|

as 1−
∑
a∈W r

p(a) ≥ 1−
∑
a∈W r

p(a) for all i and since (1−n)
(

1−
∑
a∈W r

p(a)
)

is independent of i.

Taking the expected value of both sides yields

E(Sr+1) ≥ E

(
w + (1− n)

(
1−

∑
a∈W r

p(a)
)
|Jr|
)

= w + (1− n)

(
1− E

( ∑
a∈W r

p(a)
))

E(Υr)

≥ w + (1− n)
(
1− E(Sr)

)
rw .

Since E(Sr+1) is a non-decreasing sequence bounded above, lim
r→∞

E(Sr+1) = lim
r→∞

E(Sr)

exists. Call it L. We then have

L ≥ w + (1− n)(1− L)rw

and so

L ≥ w + (1− n)rW 1
1

1 + (1− n)rw
.

As the right hand side approaches 1 as r →∞, the expected value of Sr+1 approaches 1
as well. Recalling that Sr+1 is the probability to win on the first move alone, the overall
probability to win must be at least Sr+1 and thus also converges to 1. 2

We now also generalize Theorem 3 to the class of sequential games and brute force
learning mechanism introduced in this section.

15



Theorem 10 (Generalized Introspection). Given any Brute Force Learning Mechanism M
and Simple Sequential Game G, learning happens faster when n→ 0.

Proof. Maximizing the learning rate is the essentially the same as maximising the
difference between the probability of winning in successive iterations of the game. The
problem can be expressed as the optimisation problem

max
n

(
P (G, r + 1)− P (G, r)

)
(6)

Following the logic used to reach (3), solving (6) is the same as solving the problem

max
n

([ ∑
a∈Ad :O(a)=W

p′(a) +
∑

a∈Ad :O(a)=C

p′(a)P
(
G, r, n(a, d∗)

)]
−
[ ∑
a∈Ad :O(a)=W

p(a) +
∑

a∈Ad :O(a)=C

p(a)P
(
G, r, n(a, d∗)

)])
. (7)

Now, notice in both of the cases where O(a) = W and O(a) = L, the interior expression
of (7) can be expressed in the form

(1− n)f(G, r, d∗, ar)

where f(G, r, d∗, ar) is a strictly positive function. Now, taking the partial derivative of
the difference with respect to n yields

∂

∂n

(
(1− n)f(G, r, d∗, ar)

)
= −f(G, r, d∗, ar)

which is strictly negative, as f(G, r, d∗, ar) was originally strictly positive. Thus, as n
decreases and approaches 0, the increase in winning probabilities between each itera-
tion grows larger, which contributes to a larger learning effect. 2

3.3 Conditions on a Simple Sequential Game

We will now take a moment to talk about why a brute force learning mechanism only
works on Simple Sequential Games defined in Definition 4 instead of all sequential
games. Specifically, there are three differences between a Simple Sequential Game and
the general extensive-form game (once again, using the definition in Brihaye et al. [1]).

First is information. In a Simple Sequential Game, the player has perfect infor-
mation on the structure of the game, knowing which decision node they are at but
are unaware of the payoff function. In perfect-information extensive-form games, the
player knows everything in a Simple Sequential Game, but also knows the payoff func-
tion. However, in an imperfect-information extensive-form game, the player does not
know what decision node they may be at. To see how this would affect a Brute Force
Learning Mechanism, consider the following (sub-)game:

It is easy to see how in a situation such as this, where move A1 could lead to a win
in some situations while resulting in a loss in others, a brute force learning mechanism
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Figure 3: Case of Imperfect Information

D0

?????? . . .

Other possible outcomes
D2

???

W

???

L

D1

???

W

???

L

equivalent

A1 A2 A3,4,...,i

A1 A2A1 A2

would both increase and then decrease the probability of playing A1 and A2, leading
to no determinate outcome.

The next difference is the payoff function. For this game, we required that the
outcome was discretely win or loss, while in the general extensive-form game, the
outcome of the game is assigned a value in “utils” to each player. This difference can
easily be overcome by simply imposing a threshold value such that any payoff below
the threshold is counted as a loss and every payoff above the threshold is counted as
a win. However, this would mean that a brute force learning mechanism only results
in “decent” play instead of “perfect” play, as anything above the threshold is seen as
good enough by the learning mechanism.

Finally, it is possible for some decision nodes of a general extensive-form game to
not have any winning outcomes. For a simple example, consider the game in Figure 4
where the decision node reached after playing move A2 has no winning outcomes:

Figure 4: Case of Unfavorable Outcomes

D

??? ???

D D

???

W

???

L

A1 A2

B1 B2
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Given such a game, it is easy to see that the the probabilities of playing moves B1

andB2 are unchanged due to them being the only possible move, while the probability
of playing moves A1 and A2 also do not change through iterations of the game due to
a brute force learning mechanism not changing the probability of playing moves that
result in a continuation of the game. Thus, play does not improve (or even change at
all) through multiple iterations of the game.

4 Further Research

Further investigation could be done along several routes. Based on the conditions
on a Simple Sequential Game, different learning algorithms can be designed to allow
for non-deterministic results and for “mean” games where there isn’t a way to win at
every decision node. If generalized to all sequential games, this could provide another
method to utilize an algorithm to brute force solve complicated games.

Given the iterative nature of a brute force learning, another possible application
would be to test a brute force learning mechanism against a machine learning algo-
rithm to see which converges to perfect play faster given the same game and initial
conditions.10
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