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Computational and Mathematical Analysis of a Conver-
gent Alphanumeric Reduction Algorithm

Arqam Patel1

1 Introduction

Consider the following algorithm.

Algorithm 1: Convergent Alphanumeric Reduction Algorithm (CARA)
1. Take any number x.
2. Spell it and count the number of letters (excluding spaces and ‘and’s).
3. Repeat Step 2 with the number obtained thus.

For example, applying CARA to the number 15, we get:

15 (fifteen)→ 7 (seven)→ 5 (five)→ 4 (four)→ 4 (four)→ · · ·

Let fn(x) be the nth iteration of this algorithm on x. For instance, we can see from the
above example that f1(15) = 7, f2(15) = 5, and fn(15) = 4 for all n ≥ 3.

The aim of this paper is to present and prove the following result.

Theorem 1. lim
n→∞

fn(x) = 4.

This theorem is roughly analogous to how the 3n+1 function reduces every number
to 1 according to the Collatz Conjecture [1].

The paper present a computational verification as well as a mathematical proof for
the convergence of all whole numbers to 4 upon successive application of CARA.

Since counting the letters in the spelling of a number is quasi-mathematical, the be-
haviour of the function is erratic and seemingly arbitrary, which makes it challenging
to prove our theorem. However, in the following paper, this is alleviated by taking into
account an observed pattern in the behaviour of certain numbers (‘n-illion’), and using
it to make an assumption on the spelling length of all numbers belonging to the group.
Further, all possible cases are considered and separately treated when necessary. This
allows us to complete the proof for all natural numbers.

While the result itself is presumably of little practical significance, the paper demon-
strates how the behaviour of unpredictable and seemingly arbitrary functions may be
analysed using generalisations and assumptions from initial conditions.

1Arqam Patel is a senior student at Rahul International School, India
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2 Definitions

To help make the proofs reader-friendly, some functions and sets have been defined
in the subsections below. Further, we will define a useful system used for spelling
numbers.

2.1 Functions

The following functions are used in the proof and other parts of the paper to denote
the operations defined here. For each natural number x, define the function fn(x) by

f0(x) = x ;
f1(x) is the number of digits in the spelling of x ;
fn(x) = f1(fn−1(x)) .

Also, define g(x) = f0(x)− f1(x).

2.2 Special sets

Define the sets

D = {20, 30, 40, 50, 60, 70, 80, 90} ;
T = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19} ;
L = {1, 2, 3, 4} .

The set D consists of tens digit place holders which are quite ubiquitous in numbers
greater than ten. The set T consists of numbers which cannot be named using conven-
tional rules since they have distinct names incorporating both units and tens places
simultaneously. The set L consists of numbers x whose numerical value are smaller
than or equal to the length of their spelling; that is, f0(x) ≤ f1(x). The f0, f1 and g
values of the numbers in D, T , and L are given below.

f0 Spelling f1 g

20 Twenty 6 14
30 Thirty 6 24
40 Forty 5 35
50 Fifty 5 45
60 Sixty 5 55
70 Seventy 7 63
80 Eighty 6 74
90 Ninety 6 84

f0 Spelling f1 g

10 Ten 3 7
11 Eleven 6 5
12 Twelve 6 6
13 Thirteen 8 5
14 Fourteen 8 6
15 Fifteen 7 8
16 Sixteen 7 9
17 Seventeen 9 8
18 Eighteen 8 10
19 Nineteen 8 11

f0 Spelling f1 g

1 One 3 -2
2 Two 3 -1
3 Three 5 -2
4 Four 4 0
5 Five 4 1
6 Six 3 3
7 Seven 5 2
8 Eight 5 3
9 Nine 4 5
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2.3 A system for spelling numbers

There are infinitely many numbers but the need is rarely felt for regularly using words
for numbers beyond 1012 (one trillion). However, for the purpose of the proof, an
extrapolation of the current English short scale system [3] has been used to denote
every number, however large, in words.

It may be noted that compound place value indicators like million trillion etc. are
not used in the algorithm. Capital letters are used to denote digits and numerals be-
fore/after them indicate a single number, not their product. For instance, 1M can be
10, 11, 17 etc.

In the present system, all numbers are treated as a sum of a series of three digit
numbers (‘triads’) which are each multiplied by 103(n−1) (for the nth triad). For example,

333, 333, 123 = 333× 106 + 333× 103 + 123× 100

= 333× 103(3−1) + 333× 103(2−1) + 123× 103(1−1) .

The term 103(n−1) may be called n-illion (though the word for n-illion is often derived
from the Latin name for n-2).

The following table contains the names and values of n-illion numbers for each
value of n:

Name n Value

- 1 100

Thousand 2 103

Million 3 106

Billion 4 109

Trillion 5 1012

Quadrillion 6 1015

Quintillion 7 1018

Hextillion 8 1021

Septillion 9 1024

Octillion 10 1027

Nonillion 11 1030

Decillion 12 1033

Undecillion 13 1036

Duodecillion 14 1039

Tredecillion 15 1042

Quattuordecillion 16 1045

Quindecillion 17 1048

Name n Value

Hexdecillion 18 1051

Septendecillion 19 1054

Octodecillion 20 1057

Novemdecillion 21 1060

Vigintillion 22 1063

Unvigintillion 23 1066

Duovigintillion 24 1069

Trevigintillion 25 1072

Quattourvigintillion 26 1075

Quinvigintillion 27 1078

Hexvigintillion 28 1081

Septenvigintillion 29 1084

Octovigintillion 30 1087

Novemvigintillion 31 1090

Trigintillion 32 1093

Untrigintillion 33 1096

Duotrigintillion 34 1099

Similarly, the spellings of each group Tr × 103(n−1) are also broken down, as the
spelling of the three-digit number suffixed with the corresponding n-illion word, as
expressed below:

f1(Tr × 103(r−1)) = f1(Tr) + f1(10
3(r−1)) .
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The triads, or three digit groups are further broken down, as follows. Let KLM be a
three digit number where K, L and M represent, respectively, the hundreds’, tens’ and
ones’ digits. X ′ signifies the number X spelled out.

The spelling of a number KLM can be written as

“K ′ hundred L′-ty M ′”

where L′-ty is the word for the corresponding number from set D.
If L = 1, then the spelling of K1M will be of the form “K ′ hundred M ′-teen” where

M ′-teen is the word for 1M , the corresponding number from the set T , so

f1(KLM) = f1(K00) + f1(LM) = f1(K) + f1(100) + f1(LM) = f1(K) + 7 + f1(LM) .

If L 6= 1 and L0 ∈ D, then

f1(LM) = f1(L0) + f1(M) = f1(1M)

where L = 1 and 1M ∈ T , and

g(KLM) = f0(KLM)− f1(KLM)

= f0(K00) + f0(LM)− f1(K00)− f1(LM)

= g(K00) + g(LM) .

In conclusion, any natural number x can be expressed as

x =
∑

(Tr × 103(r−1)) ,

and its spelling x′ can be expressed as

x′ = “T ′n n-illion · · · T ′4 billion T ′3 million T ′2 thousand T ′1”

where each Tr is a triad.
For example, the spelling of 23,456,789 is the concatenation of the spellings of 23,

456, and 789, each suffixed by the respective n-illion word (empty in case of n = 1):

“Twenty three million four hundred fifty six thousand seven hundred eighty nine”.

Finally, the functions f1(x) and g(x) can be expressed as follows:

f1(x) =
∑

f1(Tr × 103(r−1)) and g(x) =
∑

g(Tr × 103(r−1)) .
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3 Computational verification

3.1 Method

A program [5] was built in Python 3 to verify the applicability of CARA for numbers
in a given range.

Each number within the range is used as the initial input for an iteration of the
algorithm function fn(x) where n is the number of iterations before the value repeats
itself. Subsequently, the process is repeated for the new number thus obtained, as a
nested loop.

When the loop reaches a value which yields itself upon further iteration, that is, a
number which has a spelling length equal to its numerical value (which would other-
wise lead to an infinite loop), the program stops and checks whether this value is four.
If so, then the program records an increment of one in the number of values satisfying
convergence.

3.2 Source code
def number_to_word(number):

number_string = str(number)

# Remove extra zeroes from beginning (e.g. 000001 -> 1)
number_string.lstrip('0')

# Define required sets of strings for naming numbers
suffix = ['' , 'thousand', 'million', 'billion', 'trillion',

'quadrillion', 'quintillion', 'sextillion', 'septillion',
'octillion', 'nonillion', 'decillion', 'undecillion',
'duodecillion', 'tredecillion', 'quattuordecillion',
'quindecillion', 'hexdecillion', 'septendecillion',
'octodecillion', 'novemdecillion', 'vigintillion',
'unvigintillion', 'duovigintillion', 'trevigintillion',
'quattourvigintillion', 'quinvigintillion', 'hexvigintillion',
'septenvigintillion', 'octovigintillion', 'novemvigintillion',
'trigintillion', 'untrigintillion', 'duotrigintillion']

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

singledigits = ['','one', 'two', 'three', 'four', 'five', 'six',
'seven', 'eight', 'nine' ]↪→

teen = ['ten', 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen',
'sixteen', 'seventeen', 'eighteen', 'nineteen']↪→

ty = ['','','twenty', 'thirty', 'forty', 'fifty', 'sixty', 'seventy',
'eighty', 'ninety']↪→
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# Converting the number into triad composition form (e.g. 1345 -> 001345)
m = len(number_string) % 3
if m == 1:

number_string = '00' + number_string
elif m == 2:

number_string = '0' + number_string

# Counting number of triads (123456 : 2)
n = len(number_string)/3
no_of_triads = int(n)

# Extracting all triads into a list (123456 -> ['123' , '456'])
triad_list = []

for i in range(no_of_triads):
k = number_string[3*i:3*i+3]
triad_list.append(k)

# Naming each triad [123 -> one hundred twenty three]

# Matching a single digit to its name (e.g. 5 -> five)
def digitname(n):

return singledigits[n]

# Naming the hundreds place of triad
def hundreds(first_digit):

if first_digit == 0:
return ""

else:
return digitname(first_digit) + ' ' + 'hundred '

# Naming the tens and units places of triad
def tens_and_units(second_digit,third_digit):

if second_digit == 0:
return digitname(third_digit)

elif second_digit == 1:
return teen[third_digit]

else:
tens_place = ty[second_digit]
units_place = digitname(third_digit)
return tens_place + ' ' + units_place

# Naming a triad
def triad_name(triad):

hundred = triad[0]
ten = triad[1]
unit = triad[2]
hundreds_place = hundreds(int(hundred))
tens_units_place = tens_and_units(int(ten),int(unit))
return hundreds_place + tens_units_place
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# Suffixing a triad place value (In 123000, 123-> one hundred twenty three
thousand)↪→

number_spelling = ''
for i in range(no_of_triads):

k = triad_list[i]
if triad_list[i] != '000':

number_spelling += (triad_name(k) + ' ' + suffix[no_of_triads -
i -1] + ' ')↪→

return number_spelling

# Counting length of spelling
def namelength(s):

k = number_to_word(s)
spelling_length = len(k) - k.count(' ')
return spelling_length

# For each number, finds spelling length (after converting to spelling
first) and then proceeds with it as next number in loop↪→

# Outputs the final number obtained after algorithm is repeated
sufficiently (i.e. before entering an infinite loop)↪→

def cara_loop(n):
while namelength(n) != n:

n = namelength(n)
return n

# Taking input for the upper bound of the range of natural numbers to test
test_range = int(input('Range? ')) + 1
true_outputs = 0

# Loop checking convergence, i.e. whether output of the loop is 4, for each
integer and counting the number of integers satisfying it↪→

for i in range(1,test_range):
if cara_loop(i) == 4:

true_outputs +=1

# Displaying output (number of natural numbers in the range satisfying the
condition)↪→

print('CARA is convergent for {} numbers in the given
range.'.format(true_outputs))↪→

3.3 Results

The following represent trials of the program:
Input: Range upper bound? 100000000

Output: CARA is convergent for 100000000 numbers in the given range.

A variation of the program takes the base 10 logarithm of the upper bound as input, to
simplify input for verifying for a large range:

Input: Exponent of 8 in upper bound? 8

Output: CARA is convergent for 100000000 numbers in the given range.

CARA was tested and observed to hold for the first hundred million natural numbers.

7



4 Proof of Theorem 1

A mathematical proof of Theorem 1 will now be given. It proceeds step-wise, proving
that certain numbers get reduced to 4 and then that all other numbers in turn must
reduce to one of those numbers. Thus, all numbers must eventually reduce to 4.

The proof is divided into four sub-proofs:

• Proof that all single-digit numbers reduce to 4

• Proof that all double-digit numbers reduce to 4

• Proof that all three-digit numbers reduce to 4

• Proof that all larger numbers reduce to 4

4.1 Assumption

The sole assumption taken for the purpose of the proof is that g(103n) > 2; that is, that
the number of letters in the spelling of n-illion is at least 2 less than the numerical value
of n-illion itself. This may be interpreted as intuitively true, as words having such a
large number of letters are not a part of conventional lexicon (the longest English non-
technical word [4] is just 29 letters long, though there are chemical names up to 189819
letters long).

However, a more rigorous justification may also be provided using extrapolation
from the set of well-defined n-illion names (Table 1), taken till 1099.

A plot of log10(n− illion) versus length of the corresponding spelling was obtained.
Subsequently, using linear regression, the best fitting line was identified. The slope
was almost exactly 0.1 and intercept slightly more than 7.68.

0 20 40 60 80 100

10

15

20

log(n-illion)

le
ng

th

n-illion
fitted line

The initial samples may thus be modeled as

f1(x) ≈ 0.1 log10(x) + 7.68 .
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The coefficient of determination (R2) was found to be nearly 0.71, indicating that this
would be a reasonably good approximation to model the growth of the spelling length
in relation with the size of n-illion numbers. If extrapolated, this yields the conclusion
that, to a large extent, f1 varies logarithmically with f0.

Assuming that early trends are followed (or that the rate of increase is slower than
the early trends, as indicated by the last few cases in the present sample space), this
yields the conclusion that the rate of growth of spelling lengths of decimal place hold-
ing names is likely to be much smaller than that of their numerical values .

This implies that for every thousandfold increase in numerical size, the spelling
length would increase much less than 1000 times for n-illion numbers, and since the
initial values of g are well above 5, the assumption would likely never fail.

4.2 All single-digit numbers reduce to 4

The following sequences, obtained by applying CARA to all single digit numbers, all
end in 4.

1 (one) → 3 (three)→ 5 (five) → 4 (four)
2 (two) → 3 (three)→ 5 (five) → 4 (four)
3 (three) → 5 (five) → 4 (four)
4 (four) → 4 (four)
5 (five) → 4 (four)
6 (six) → 3 (three)→ 5 (five) → 4 (four)
7 (seven)→ 5 (five) → 4 (four)
8 (eight) → 5 (five) → 4 (four)
9 (nine) → 4 (four)

4.3 All two-digit numbers reduce to 4

From 1 to 9, 1 (g = −2), 2 (g = −1) and 3 (g = −2) are the only numbers which have
f0 < f1 and will thus produce a number larger than themselves on application of the
function. However, there are no numbers with 1 or 2 letters in their spellings so these
appear in the algorithm only if these numbers are chosen. The number 3 occurs only in
case of 6 and 1, both of which were shown above to lead to 4 by application of CARA.

From the set T , there is no number with g < 0; the minimum value of g among
numbers in T is g(11) = g(13) = 5. Similarly, from D, there is no number with g < 0:
the minimum value of g among numbers in D is g(20) = 20− f1(20) = 20− 6 = 14.

Now consider a number of the form LM where L > 1. Then, from the comments
above,

g(LM) = g(L0) + g(M) ≥ 6− 2 = 4 > 0

Indeed, for such numbers, the minimum value of g is 12, achieved by 21 and 23.
Thus, for any two-digit number x, it is proved that g(x) > 0, so f1 < f0. Hence, the

number of letters spelling x is strictly less than the value of x. CARA therefore reduces
all two-digit numbers to single-digit numbers and then to 4.
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4.4 All three-digit numbers reduce to 4

“Seventy” is the longest string arising from the tens D. Also, 3, 7 and 8 have 5 letters,
the most letters among single-digit numbers. The three-digit numbers with the longest
spellings are therefore

777 373 878 378 873 773 778 377 877 ,

each of which is spelled with f1 = 24 letters. Hence, for any three-digit number x,
f0 ≥ 100 and f1 ≤ 24, so g(x) ≥ 76 > 0.

It follows that CARA reduces each three-digit number to a smaller number, and
eventually to a double- or single-digit number, and from there to 4.

4.5 All numbers reduce to 4

Any number x =
∑

(Tr × 103(r−1)) can be written in words as

x′ = “Tn n-illion · · · T4 billion T3 million T2 thousand T1” .

Define R = {r ∈ {1, . . . , n} : Tr > 0}. Then

g(x) = x− f1(x) =
∑
r∈R

Tr × 103(r−1) − f1

(∑
r∈R

Tr × 103(r−1)
)

=
∑
r∈R

Tr × 103(r−1) −
∑
r∈R

f1
(
Tr × 103(r−1)

)
=
∑
r∈R

(Tr × 103(r−1) − f1
(
Tr × 103(r−1)

)
=
∑
r∈R

g
(
Tr × 103(r−1)

)
.

Suppose that x ≥ 1000; then R contains at least one number r greater or equal to 2.
By assumption, g(103(r−1)) > 2 for each r ≥ 2. Since g(x) ≥ −2 for each number
x = T1 < 1000,

g(x) =
∑
r∈R

g
(
Tr × 103(r−1)

)
>

∑
r∈R:r≥2

2− 2 ≥ 0 .

Thus, the length of spelling of any number x ≥ 1000 will be smaller than the value
of x. Therefore, CARA will reduce such numbers to numbers less than 1000 - which,
as already proved, eventually reduce to 4.

This proves that CARA does indeed reduce all positive integers to 4. �
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5 Conclusion

We have proved that each sequences generated by CARA eventually ends in 4. The
proof also informs us of more properties of these sequences. In particular, each number
bigger than 4 is strictly reduced by CARA.

This rules out the existence of any infinite self-repeating sequences, except for the
terminating sequence

4→ 4→ 4→ · · · .
This also rules out the existence of more complex repeating patterns such as

x→ y → z → x→ y → z → · · · .
Thus, all natural numbers larger than four are successively converted to smaller num-
bers by CARA until eventually reaching a number from the set {1, 2, 3, 4}, more specif-
ically either 3 or 4 since there are no numbers with one or two letter spellings, and then
yield 4 on further iteration.

This proof ultimately depends on the validity of the assumption that g(103(r−1)) > 2
for each r ≥ 2. Taking into account the pattern suggested by early trends, the assump-
tion and thus the proof can be said to hold. For future research, one could investigate
this assumption more formally.
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