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Solutions 1621–1630
Q1621 Take a point O inside a square; from this point draw six rays, all spaced at
equal angles. This will divide the square into six regions. Is it possible that all these
regions have equal area?

SOLUTION Let the area of the square be 1, and suppose that such an arrangement
exists, as shown in the diagram.

O

A

B

There are three regions of area 1
6

on one side of the line AB, total area 1
2
, and the same

on the other; so AB must pass through the centre of the square. The same holds for the
other two lines in the “star”, and so O must lie at the centre of the square. But then by
combining pairs of adjacent regions we obtain an arrangement of three equally spaced
rays meeting at the centre of the square and dividing the square into regions of area
2
6
= 1

3
. We know from the solution to Problem 1615 (see the previous issue of Parabola)

that this is impossible. Therefore, six rays cannot be arranged as desired.

NOW TRY Problem 1632.

Q1622 Find the sum of the digits of

S = 1 + 11 + 111 + 1111 + · · ·+

999 digits
︷ ︸︸ ︷

11 · · ·11 ,

where the last term on the right hand side has 999 digits, all equal to 1.

SOLUTION Multiply both sides of the equation by 9 to get

9S = 9 + 99 + 999 + 9999 + · · ·+

999 digits
︷ ︸︸ ︷

99 · · ·99 .

Now add 1 for each term on the right hand side; since there are 999 terms, this gives

9S + 999 = 10 + 100 + 1000 + 10000 + · · ·+ 1

999 zeros
︷ ︸︸ ︷

00 · · ·00

=

999 ones
︷ ︸︸ ︷

11 · · ·11 0 ;
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which can be written with the 1s split into blocks of nine digits,

9S + 999 =

111 blocks
︷ ︸︸ ︷

(111111111) · · · (111111111) 0 .

Now 111111111 is exactly divisible by 9, so when we divide both sides by 9 there will
be no “carries” between blocks and we get

S + 111 =

111 blocks
︷ ︸︸ ︷

(012345679) · · · (012345679) 0 .

The sum of the digits on the right hand side is

111× (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 9) = 4107 .

Subtracting 111 from the right hand side changes the last three digits 790 to 679, and
therefore increases the sum of the digits by 6. Hence, the sum of the digits of S is 4113.

Q1623 Consider the product of n factors

Pn = 41/4 161/16 641/64 · · · (4n)1/4
n

.

Show that if the number of factors n becomes larger and larger, the product gets closer
and closer to a fixed value; and find this value.

SOLUTION We can write the product as

Pn = 41/4 42/16 43/64 · · · 4n/4
n

;

taking logarithms of both sides and then multiplying by 4 yields

logPn

log 4
=

1

4
+

2

16
+

3

64
+ · · ·+

n

4n

4
logPn

log 4
= 1 +

2

4
+

3

16
+ · · ·+

n

4n−1
.

By writing 2
4
= 1

4
+ 1

4
and 3

16
= 1

16
+ 1

16
+ 1

16
and so on, we can re–express the right hand

side as

1 +
1

4
+

1

16
+ · · ·+

1

4n−1

+
1

4
+

1

16
+ · · ·+

1

4n−1

+
1

16
+ · · ·+

1

4n−1

+ · · ·

+
1

4n−1
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Now if n becomes larger and larger, each line of this expression becomes an infinite
geometric progression, the first being

1 +
1

4
+

1

16
+ · · · .

Moreover, the second line becomes exactly 1
4

times the first, the next 1
16

times the first,
and so on forever. Therefore the whole expression is

(

1 +
1

4
+

1

16
+ · · ·

)2

=
( 1

1− 1
4

)2

=
16

9
.

Substituting into the above expression for Pn we see that Pn approaches a value P
given by

4
logP

log 4
=

16

9

and therefore P = 44/9.

Q1624 A semicircle has diameter AB. Two chords AC and BD meet at a point X
outside the semicircle. Prove that

(AC)(AX) + (BD)(BX) = (AB)2 .

SOLUTION Join BC and AD; let P be the foot of a perpendicular from X to AB. Note
that ∠ACB and ∠ADB are angles in a semicircle and therefore are right angles.

O

X

A B

C
D

P

Now △APX and △ACB are right–angled triangles with a common angle at A, so they
are similar; the same goes for △BPX and △BDA. Therefore,

AX

AB
=

AP

AC
and

BX

AB
=

BP

BD
,

and so
(AC)(AX) + (BD)(BX) = (AP )(AB) + (BP )(AB)

= (AP +BP )(AB)

= (AB)2 .
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Q1625 Find the smallest multiple of 4321 which ends in the digits 1234. Hint : just
find a suitable multiple first. To investigate whether or not it is the smallest possible,
see the article Linear Diophantine Equations in Parabola Volume 49 Issue 2.

SOLUTION To get a multiple of 4321 in which the last digit is 4, we simply multiply
by 4:

4321× 4 = 17284 .

We want to add another multiple to this to make the second–last digit 3, without chang-
ing the last. This means we need to add 5 in the second–last place and 0 in the last; so
we add 4321 × 50. Continue in the same way: as only the last four digits are relevant,
we omit the rest.

4321× 4 = · · · 7284

4321× 50 = · · · 6050

∴ 4321× 54 = · · · 3334

4321× 900 = · · · 8900

∴ 4321× 954 = · · · 2234

4321× 9000 = · · · 9000

∴ 4321× 9954 = · · · 1234 .

Thus 4321 × 9954 ends in the digits 1234. Is this the smallest? We want a multiple of
4321 which equals a multiple of 10000 plus 1234, that is,

4321x = 10000y + 1234 ,

where x and y are integers. The theorem on page 6 of the article cited in the question
shows that the general solution for x is

x = 9954 + 10000t

where t is an integer. Now if t > 0 this gives a value larger than the one we have
already, while if t < 0 we have x < 0, which is not a valid solution; so the smallest
possibility is the one we have already. That is, the smallest multiple of 4321 ending in
the digits 1234 is

4321× 9954 = 43011234 .

NOW TRY Problem 1637.

Q1626 I want to join at right angles two iron roofs pitched at an angle θ (see the
diagram: the upper and lower edges of each roof are to be parallel). At what angles do
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I need to cut the iron pieces?

θ

SOLUTION We have added some extra lines to the diagram; and extracted and la-
belled the important section.

θ
θ

A

B

B′ C

C ′

Now BCC ′B′ is a rectangle, ∠B′AC ′ = 45◦ and ∠AC ′B′ is a right angle, so

BC = B′C ′ = AC ′ .

Also
AC ′ = AC cos θ ;

so the angle at B is

arctan
(AC

BC

)

= arctan
( AC ′

AC ′ cos θ

)

= arctan(sec θ) ,

and the angle at A in the original diagram is 180◦ minus this angle.

Q1627 Find the number of solutions to

3x+ 2y + z = 2020

where x, y and z are positive integers.

SOLUTION Each pair (x, y) with

3x+ 2y ≤ 2019 (∗)

gives exactly one value of z satisfying the equation. So N , the number of solutions
of the equation, is the same as the number of soutions of the inequality (∗). If x = 1
then 2y ≤ 2016; the number of solutions is the number of positive even integers up
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to 2016, and this is 1008. If x = 2, the number of solutions is the number of positive
even integers up to 2013, which is 1006. We proceed in the same way until we reach
the maximum possible x = 672, giving 2y ≤ 3 and just one solution. Hence

N = 1008 + 1006 + 1005 + 1003 + · · ·+ 6 + 4 + 3 + 1 .

An easy way to evaluate this sum is to group the terms in pairs and then add up an
arithmetic series. The number of solutions is

N = (1008 + 1006) + (1005 + 1003) + · · ·+ (6 + 4) + (3 + 1)

= 2× (1007 + 1004 + · · ·+ 5 + 2)

= 1009× 336

= 339024 .

Q1628 A path is marked with the integers { . . . ,−2,−1, 0, 1, 2, . . .}. A person stands
at the point 0 and flips a coin (a fair coin, so that heads and tails come up with proba-
bility 1

2
). If the flip is heads, then the person moves one step in the positive direction;

if the flip is tails, then he moves one step in the negative direction. This is done re-
peatedly. Denote by pn the probability that the person is back at the position 0 after n
steps.

(a) Explain why pn = 0 if n is odd.

(b) Suppose that n = 2k is even. Compute pn = p2k.

SOLUTION Since the person moves one step at each toss, they must always occupy
even and odd locations alternately. The walker starts at 0, which is even, so after an
odd number of tosses, they must be at an odd location and cannot be at 0. This answers
(a).

The walker is at 0 after 2k tosses if and only if these tosses consisted of k heads and
k tails. There are 22k possible sequences of 2k tosses; a sequence satisfying the above
condition is found by choosing the k locations for heads out of all 2k possible locations,
and the number of ways of doing this is C(2k, k). Therefore,

p2k =
C(2k, k)

22k
.

Note: C(2k, k) is the binomial coefficient which you may have seen written as 2kCk or
(
2k
k

)
. That is,

C(2k, k) = 2kCk =

(
2k

k

)

=
(2k)!

k! k!
.

NOW TRY Problem 1631.
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Q1629 We have a bag and seven slips of paper on which are written

• at least one of the statements in the bag is true;

• at least two of the statements in the bag are true;

• at least three of the statements in the bag are true;

• at least one of the statements in the bag is false;

• at least two of the statements in the bag are false;

• at least three of the statements in the bag are false;

• at least four of the statements in the bag are false.

One of the slips is removed; the other six are placed in the bag and we determine
whether they are true or false. How many are false?

SOLUTION For brevity we shall refer to the statements (in the order given) as T1, T2,
T3, F1, F2, F3 and F4.

Suppose that there are no false statements in the bag, or only one. Then F2, F3 and
F4 are all false and at least two of them are in the bag: this is impossible.

Therefore there are two or more false statements in the bag. This means that F1 and
F2 are both true, and at least one of them is in the bag; so T1 is true. Thus we have
three true statements, and at least two of them are in the bag; so T2 is true. By a similar
argument T3 is true. We now have five true statements; therefore the remaining two
(F3 and F4) must both be false and must be in the bag. So answer: there are two false
statements in the bag.

To be quite sure that this answer is valid (and not self–contradictory), we ought to
verify that if any one of F1, F2, T1, T2, T3 is the statement which was removed, then
the statements in the bag are true or false as indicated above.

Q1630 Recall from problem 1617 that F is the set of all dyadic fractions , that is, frac-
tions in which the denominator is a power of 2; and that for any set X , we write aX+ b
for the set of all numbers which can be written ax+ b, where x is in X .

We say that a set is locally finite if it has only finitely many elements in any finite
interval of the real number line. For example, the set of all integers is not finite, but it
is locally finite since any interval p < x < q contains only finitely many integers.

(a) Prove that F is not locally finite.

If A and B are sets of numbers, then the symmetric difference A ⊕ B is the set of all
numbers which are in A or B but not both. For example,

{ 1, 2, 3, 4, 5 } ⊕ { 4, 5, 6, 7, 8 } = { 1, 2, 3, 6, 7, 8 } :

the numbers 4, 5 are not included in the right hand side because they are in both sets
on the left hand side.
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We consider subsets X of F with the property

(2X)⊕X and (X + 1
2
)⊕X are both locally finite.

Since such X are important in a current mathematical research project, we shall call
them “important” sets.

(b) Prove that if X is a subset of F (that is, X is some set of dyadic fractions) and X is
locally finite, then X is important.

(c) Let X be a subset of F and suppose that X , the set of all dyadic fractions not in
X , is locally finite. Show that X is important.

SOLUTION For problem (a), consider an interval p < x < q, and let k be a positive
integer such that

1

2k
< q − p .

Then for any positive integer n, the interval 2n+kp < x < 2n+kq has length greater than
2n; so there are at least 2n integers s such that

2n+kp < s < 2n+kq .

This gives 2n (at least) dyadic fractions satisfying

p <
s

2n+k
< q ;

that is, the interval p < x < q contains at least 2n elements of F . But n can be chosen
as large as we like, so F has infinitely many elements in the interval from p to q, and
therefore F is not locally finite.

To solve (b) suppose that X is a locally finite set. We begin by showing that if a, b are
fixed dyadic fractions, then aX + b is locally finite. First, if a = 0 then aX + b contains
the element b and nothing else, and hence is locally finite. Now suppose a 6= 0: firstly
take a > 0, and consider the interval from p to q. The elements of aX+ b in this interval
satisfy p < ax+ b < q and hence

p− b

a
< x <

q − b

a
;

since X is locally finite, there are only finitely many values for x and hence finitely
many elements ax + b. So aX + b is locally finite. A very similar argument applies if
a < 0.

Taking a = 2, b = 0 shows that 2X is locally finite. Now any interval of the real line
contains finitely many elements of 2X , finitely many elements of X , and hence finitely
many elements of (2X) ⊕X ; so this set is locally finite. Taking a = 1, b = 1

2
, the same

argument proves that (X + 1
2
)⊕X is locally finite; and this shows that X is important.

For (c), we note two things for a start.
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• If a, b are dyadic fractions and a is a power of 2, then aX + b = aX + b. Why is this
true? – a number y is in aX + b if and only if y is in F and not in aX + b; because
of Problem 1617(c), this is the same as saying that y is in aF + b and not in aX + b;
that is, (y − b)/a is in F and not in X ; so y is in aX + b.

• For any sets, we have A ⊕ B = A ⊕ B: this is because each side consists of the
numbers which are in A but not B, together with those which are in B but not A.

Now suppose X is locally finite. From (b) we know that (2X)⊕X and (X + 1
2
)⊕X are

locally finite; the first bullet point above says that 2X ⊕ X and X + 1
2
⊕ X are locally

finite; and the second says that (2X) ⊕ X and (X + 1
2
) ⊕ X are locally finite. So X is

important.

NOW TRY Problem 1640.
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