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A meteorological application of the Euler spiral map pro-

jection
Timothy Hume!

1 Introduction

The Euler spiral map projection is an unusual map projection that results from flatten-
ing a spherical spiral onto a flat surface. It was popularised in a video featuring math-
ematician Hannah Fry [4] and is based on the maths in a short 2012 paper by Bartholdi
and Henriques [1]. Figure 1 shows an example of the Euler spiral map projection.

Figure 1: Example of the Euler spiral map projection. Image generated from the web-
site http://andersk.mit.edu/euler-spiral-projection/.

At first sight, the Euler spiral map projection does not appear very practical. For
example, the spiral dissects many countries on the map. However, concepts that ini-
tially appear to have limited practical use are often later found to have unexpected
applications. This article shows how the Euler spiral map projection can be used to
compress meteorological data. Additionally, it has several other interesting properties
which make it useful for meteorology.

However, first we present a brief introduction to numerical weather prediction and
cartography for readers unfamiliar with these subjects.
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Numerical weather prediction

Numerical weather prediction (NWP) has had a significant impact on weather forecast-
ing. It has enabled the production of weather forecasts for up to a week or more into
the future. NWP solves the equations of atmospheric motion using numerical tech-
niques. Richardson pioneered NWP in his 1922 book Weather Prediction by Numerical
Process [7]. However, at the time computations were only able to be performed manu-
ally, making the method impractical. The first modern NWP forecast was produced in
1950, using the ENIAC computer (Figure 2). A forecast for the North American region
twenty-four hours into the future took about twenty-four hours of computer time [3].

Figure 2: Programmers Ruth Lichterman and Marlyn Wescoff working on the ENIAC
computer. U.S. Army photo [10].

Nowadays, global NWP forecasts are routinely made by many weather services us-
ing some of the largest supercomputers in the world. Predictions of atmospheric pa-
rameters such as temperature, wind, and rain are usually disseminated as a grid of
data points on an equirectangular map projection. Figure 3 shows a global NWP tem-
perature forecast on an equirectangular map. These data are used in the examples pre-
sented throughout this article. The data in Figure 3 are on a 2.5°x2.5° rectangular grid
for clarity. However, data are routinely available at much higher spatial resolution.
For example, the Australian Bureau of Meteorology runs a global NWP model with a
latitudinal grid point separation of 0.117 788° and longitudinal spacing of 0.175 78° [6].

The equirectangular map projection is simple and easy for users to process. How-
ever, it has some deficiencies. For example, although about 26 % of the grid points in
Figure 3 lie polewards of the polar circles, the polar regions only cover about 8 % of the
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Figure 3: A forecast of temperature 2 m above the ground from the U.S. National Cen-
ters for Environmental Prediction Global Forecast System model. The forecast is valid
at 00:00Z on 2 September 2020.
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NWP data for aviation use are produced by the World Area Forecast Centres in

the United Kingdom and the United States. Historically, data were disseminated on a
This article revisits the concept of thinned grids, using the Euler spiral map pro-
jection. In addition to reducing the number of grid points disseminated to users, this

Earth’s surface?. Computation of the area of the polar regions on a spherical Earth is
2The polar circles are currently located at 66°33'48.2"” north and south of the Equator.

an interesting maths problem left to the reader.
the poles, as illustrated in Figure 4. Thinned grids reduce the size of the data files sent
to users. However, in recent years they have fallen out of use as data formats have

changed, and communication networks have become faster and cheaper.
tortion. However, it wasn’t until 1827 that Gauss proved that every projection from a

“thinned” grid, to deal with the multitude of grid points near the poles. In a thinned
grid, the number of points on parallels (circles of constant latitude) decrease towards
Cartography is the study of maps. Maps have been discovered dating back to Baby-
lonian times, if not earlier [11]. As early as the sixth century BC Thales of Miletus
developed the Gnomonic projection for star maps [8]. It would have become apparent
to early cartographers that mapping a sphere to a flat surface always introduces dis-

the globe in the Australian region. The spacing of the grid points is 1.25° at the equator,
projection has some other useful properties when used with meteorological data.

Figure 4: Example of a thinned grid used to disseminate NWP data for two octants of
and increases on parallels closer to the poles.

A brief introduction to cartography
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Figure 5: Tissot’s indicatrices on the equirectangular map projection.

spherical to a flat surface must create some distortion [5].

A useful graphical tool to display the distortion in a map projection is the Tissot’s
indicatrix [9]. To construct these indicatrices, we project circles with infinitesimal ra-
dius from the surface of the Earth to the map. The projection of a circle to the map will
be elliptical. We then rescale the ellipses to a convenient size for viewing. A mathe-
matical treatment of the indicatrices can be found in [8]. Figure 5 shows indicatrices
on the equirectangular map projection. The distortion in the map is readily apparent.
Small areas appear much larger in the map projection in the polar regions than at low
latitudes.

For the dissemination of numerical weather prediction data, it would be useful if
the area of each grid cell is equal, no matter where on the Earth that cell is. An equal-
area map projection is required to achieve this. The sinusoidal map projection (Fig-
ure 6) is an example of one of the first equal-area map projections, developed during
the Sixteenth Century [2]. Examining the Tissot’s indicatrices in Figure 6, it is apparent
they are the same area at all locations. However, the shape distortion increases away
from the Equator and central meridian.

The Euler spiral map projection

It would be nice to have a map projection which is not only equal-area but also does not
distort the shape. At first, this might seem unlikely, given a sphere cannot be flattened
onto a plane without distortion. A 2012 paper by Bartholdi and Henriques studied
the shape a spiral orange peel would take when flattened onto a plane, as shown in
Figure 7 [1]. As the width of the peel becomes thinner, they showed the distortion in
the flattened peel becomes smaller, and the shape of the flattened peel tends towards
an Euler spiral. However, the flattened peel would need to be infinitesimally thin to be
distortion-free.



Figure 6: Tissot’s indicatrices on a sinusoidal projection of the Earth.

If the orange peel is width + on a sphere of unit radius, then Bartholdi and Hen-
riques showed that the flattened peel is parameterised by the equations

xz(t) = i cos v/ (2mN)? — u?du,
y(t) = _/o sin /(27N )? — u?du.

Here, t ranges from —27 NV at the south pole to 27N at the North Pole of the sphere.
If instead of an orange, one imagines peeling the surface of the Earth, it is evident
we have a new type of map projection. Figure 1 shows the Euler spiral map projection.

(1)

2 Applying the Euler spiral projection to meteorological
data

The NWP data shown in Figure 3 are on a 2.5°x2.5° equirectangular map grid. The grid
box spacing in radians, A¢, is

2T
=25x — ~0.04 d. 2
Ao 25><360 0.0436 ra (2)
The distance between adjacent grid points on a meridian is thus
d= R.A¢ ~ 278 km, 3)

where R, is the radius of the Earth and d is the distance between grid points on a merid-
ian. The Earth is assumed to be spherical, with a radius of approximately 6371 km. In
reality, the Earth is an oblate spheroid, but the difference from a sphere is minor’. As

3The polar radius of the Earth is 6356.8 km, the equatorial radius is 6378.1 km and the mean radius is
6371.0 km.



Figure 7: Peeling an orange in a spiral. Public domain image obtained from https:
//www.pikrepo.com/feawc/orange—-spiral-skin—-artwork.

discussed earlier, the distance between adjacent grid points on the parallels decreases
as the poles are approached. This results in an increased density of grid points in the
polar regions.
A small grid box on the equator of the equirectangular map covers an area, A, of
approximately
A~ RPAQ* ~ T7277km?. (4)

Equation 4 is not exact, because the small grid box forms a portion of a spherical sur-
face, not a plane. However, the approximation becomes more accurate as the grid box
decreases in size. If the Earth were to be tiled in grid boxes with this area, the number
of grid boxes, n, to cover the whole surface would be

47 R? 4m
v v 6600. )

n

However, the equirectangular map grid in Figure 3 contains 144 x 73 = 10512 grid
points. Remapping the NWP data to an equal-area map projection reduces the number
of grid cells required to cover the Earth by 37 %. This reduction leads to smaller file
sizes and faster transmission times when sending the data to users. However, it comes
at the expense of coarser spatial resolution in the polar regions.

Figure 8 illustrates the process of mapping NWP data to the Euler spiral map pro-
jection. Points are laid out on a spiral starting at the South Pole, and terminating at the
North Pole. The spiral width is the same as the spacing of adjacent grid points along
a meridian in the original equirectangular map projection. For the 2.5°x2.5° data pre-
sented earlier, this is approximately 278 km. The distance between adjacent points on
the spiral is the same as the distance between adjacent points on the equator of the
equirectangular map. For the example data, this is also 278 km. Consequently, every
point on the spiral represents an almost equal-area square region of 278 km x 278 km.
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Figure 8: Orthographic map of the Earth illustrating how points can be laid out in a
spiral on the globe so they have equal area. When this spiral is flattened out, it forms
the Euler spiral map projection shown in Figure 9.

We interpolate data from the original equirectangular projection in Figure 3 to the
spherical spiral using bilinear interpolation.

Figure 9 shows the spiral in Figure 8 flattened to an Euler spiral on a plane. It
appears that much of the spatial information in the original temperature field is lost.
However, “re-wrapping” the Euler spiral around the globe recovers this information.
This task is conceptually no more complicated than processing data on the thinned
grid shown in Figure 4.
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Figure 9: The temperature data mapped onto the Euler spiral map projection. Dis-
tances are in units of Earth radii, R..
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Figure 10: Temperature displayed as a function of distance from the South Pole end of
the Euler spiral map projection.

3 Some useful properties of the Euler spiral map projec-
tion

The Euler spiral projection displayed in Figure 9 also provides a new way to reference
any NWP data point on the globe. We can reference data points by their distance from
the beginning of the spiral, instead of a latitude and longitude. The projection has
taken a two-dimensional data array and flattened it onto a single dimension. Figure 10
shows the data plotted as a function of the point’s distance from the beginning of the
spiral.

The black line in Figure 10 shows the temperature starting at the South Pole and
ending at the North Pole. The latitudes of points in the spiral form an increasing se-
ries, shown on the top axis of the diagram. The thick green line is created by passing a
Gaussian filter with a width of 432 points over the data. The Gaussian filter removes
the high-frequency variations in the temperature data to highlight the relationship be-
tween temperature and latitude.

Displaying the data this way highlights several features. Firstly, the highest fre-
quency variations in temperature occur because the spiral alternately travels through
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the day and night sides of the Earth; the night-time side is usually colder than the day-
time side. The oceans never fall below 0 °C. Temperatures higher than 0 °C are seen at
latitudes north of about 68°S because the spiral traverses at least some ocean at these
latitudes. Polewards of 68°S, points are either over sea ice or Antarctica. Lower tem-
peratures occur over high mountain ranges. The effect of the Andes and Himalayas
are readily apparent in the regions indicated in the diagram. The Greenland ice sheet
is also evident because it is colder than its surrounds.

Another property of equal area map projections is that they make the computation
of global averages easy. Because each grid cell has equal-area, the global average is
simply

r=13"1 ©)
i=0
where n is the number of points on the spiral, 7; is the value of the variable being
averaged at each point on the spiral, and T is the global average of the variable. To
compute the global average of data on the standard equirectangular grid would require
differing weights for each grid cell based on their area. The global average temperature
of the data shown in the preceding figures is 15.8 °C.

4 Conclusions and further reading

The Euler spiral map projection can significantly reduce the number of NWP grid points
required to cover the globe, compared to the usual equirectangular map. We showed
that the number of points in the Euler spiral grid was 37 % less than the rectangular
grid.

Although the author does not anticipate the widespread use of this technique to
compress NWP data, there may be specialised applications where the compression and
other properties of the Euler spiral map projection are useful. Meteorological data
compression remains an important topic. With the increase in computer power, the
volume of meteorological data generated daily has exploded. Some weather forecast-
ing agencies maintain magnetic tape archives hundreds of petabytes in size. Writing
and retrieving data to and from magnetic tape is slow, so savings gained from data
compression are vital.

Hopefully, readers have found this introduction to meteorology, cartography and
the Euler spiral map projection interesting. All references in the article are available
on the web; hyper-links are provided in the bibliography. Some other suggestions for
further reading and investigation are listed below.

Map Projections — A Working Manual is a valuable and practical introduction to
cartography [8]. For a fascinating new class of map projections known as myriahe-
dral projections, see Wijk [12]. The open-source Generic Mapping Tools (GMT) cre-
ated all the maps presented in this article. GMT is available from https://www.
generic-mapping-tools.org/ [13].

Real-time NWP data are available from the U.S. National Centers for Environmental
Prediction (NCEP: https://nomads.ncep.noaa.gov/). A NASA software package,
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Panoply, can easily display data obtained from the NCEP site on a range of map projec-
tions. Panoply is available from https: //www.giss.nasa.gov/tools/panoply/.
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