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Vertical oscillations of a bridge induced by a pedestrian
Timothy Kang1

Abstract

Pedestrians have been known to cause vibrations on bridges from the forces
exerted by their footsteps as they cross it. In the case of soldiers, squadrons are or-
dered to break stride to prevent marching in unison while crossing the bridge. This
is to avoid causing more significant vibrations that have the potential to collapse
the bridge. This is an example of a pervasive phenomenon known as resonance.
We review, develop, and analyze a mathematical model of the coupled dynamics of
the bridge and footsteps of soldiers that illustrates the phenomenon of resonance.

1 Introduction

In several instances of scientific literature, we can find cases of bridges collapsing as a
result of soldiers marching across it [1, 2, 3]. The fundamental principles that cause the
collapse of the bridge are already known. In order to better understand the physical
representation of this phenomenon, we consider the bridge as a simple, harmonic oscil-
lator. The bridge is assumed to remain restricted to vertical motion, following Hooke’s
Law [4]. This is illustrated in Figure 2, where we model the bridge as a platform atop
springs to simulate the behavior of the bridge’s oscillations.

To understand the motion and characteristics of a simple harmonic oscillator, we
consider a more familiar system. For this example, we refer to a toddler on a swing.
All physical objects exist with a natural frequency. The pendulum that is the swing has
a natural frequency. In a controlled environment with no external factors affecting the
state of the pendulum, assuming the pendulum has an initial motion, it will oscillate
at a specific frequency that is dependent on the properties of the pendulum itself. With
this particular environment and conditions, the swing will move back and forth in a
repeated pattern without disruption. In a real world application, the amplitude of the
oscillations will gradually decrease as time passes and the pendulum will eventually
stop oscillating. The decrease in amplitude is a result of damping, which is a combi-
nation of various factors like friction and gravity that exert forces that go against the
forces of the oscillations. The bridge behaves similarly, though the oscillations are in
the vertical direction and the force required to set the bridge in motion is slightly larger
than the force to move the toddler.

Once the toddler is pushed on the swing, it becomes an example of a forced oscil-
lator. The exerted force is external, by the person pushing the toddler. The force is
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periodic, and the frequency of the forces are synchronous with the oscillations of the
swinging toddler. The child is pushed at the same point during each oscillate, and the
toddler will continue to swing higher and higher. This is an example of a phenomenon
known as resonance. Though the oscillations will continue to increase indefinitely, in
a real-world scenario, damping would limit the oscillations.

Figure 1: Image of Pont de la Basse-Chaı̂ne (Angers bridge) on 23 November 2007,
prior to the collapse in 1850.

The physics of the oscillations of a bridge caused by the marching of soldiers is
comparable to the physics of the oscillations of a toddler on a swing being pushed by
a person. Similar to the intervals of the person’s pushes of the toddler, the periodic
force of the footsteps of the soldiers will cause the bridge to oscillate. When the forces
of the footsteps are in resonance, the amplitude of the oscillations will continue to
increase over time. Though damping will hinder the amplitude of the oscillations, it
may not reduce the impacts of the soldiers’ footsteps enough to avoid the collapsing of
the bridge.

This phenomenon of resonance is the subject of study for this article. The article is
organized as such: the model of the bridge is elaborated in Section II, the mathematical
model of the instance is recognized in Section III, the natural motion of the bridge is
identified in Section IV, and the impacts of the soldiers on the bridge is established in
Section V.

2 Mathematical Model of a Bridge Without Pedestrians

As previously mentioned in the Introduction, the bridge is to be considered a platform
restricted to vertical motion only. The model also represents the vibrations or shaking
of the bridge with the platform being on top of a spring. In the model, we disregard
the effects of damping. The only acting forces on the platform are the weight of the
platform and the elastic force of the platform and spring, denoted by Fe. The mass
of the platform is denoted by M . This representation is modeled following Hooke’s
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Figure 2: Bridge as a platform. Free body diagram.

Law. At a specific height value, dependent on the weight and elastic property of the
platform, the force is zero. This height is called the equilibrium height. If the height
is at any other point, the elastic force is inversely proportional to the difference of this
height and the equilibrium height. For instance, if the platform is below the equilib-
rium height, the elastic force will be a positive force, that goes in the upward direction.

We denote by x the height of the platform along a vertical axis, when x = 0. The pos-
itive x-values are the positions at which the platform is above the equilibrium height
and the negative values are below. The elastic force of the platform can be defined
as Fe = −kx, where k is a positive constant that represents a elastic property of the
spring. The negative sign creates a resisting force that acts in the opposite direction
that the platform is in relative to the equilibrium point. The x-value creates a larger
elastic force as it moves further away from the equilibrium point. By denoting g the
gravitational constant and a the acceleration of the platform, we can use Newton’s
second law of motion, force equals mass times acceleration, to create the equation

− kx−Mg = Ma . (1)

We consider the change in the bridge’s x-position over time. We use the standard
notation of t to denote time and v to denote the velocity of the platform. The functions
x, v, and a are all functions of t. We recall that the function a is the derivative of function
v, and that the function v is the derivative of function x. We denote the derivatives of
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functions with primes. As a result, we can replace the a in Equation (1), which then
becomes

− kx−Mg = Mx′′ . (2)

Equation (2) is a different equation where the unknown is a function. In the case
of this equation, it would be x = x(t). Derivatives of the unknown also appear in the
equation, which creates an infinite number of solutions to the equation. There must be
defined variables that allow for only one possible solution. The required variables are
the initial height and velocity of the platform. This can be mathematically described as
the values of x(0) and x′(0). It must also be considered that the constant function x(t) =
−Mg/k is a solution. This equation represents when the platform is not moving and is
at the particular height where the elastic force is of the same magnitude as the weight,
though the weight is in the opposite direction, which counteracts the magnitude of
each force. With this particular height in mind, there can be a substitution in variables
to make future equations simpler. There can be a change in the dependent variable

z(t) = x(t) +
Mg

k
. (3)

This creates a setting for Equation (2) that sets the height to an equilibrium between
the weight of the platform and the elastic magnitude. After algebraic manipulation,
and condensing

√
k/M into the variable w, Equation (2) becomes

z′′ + w2z = 0 . (4)

After arriving at Equation (4), there are an infinite number of solutions to the equa-
tion. Though the arrival at the the solution is not necessary, the solutions are

z = A sin(wt+ φ) . (5)

In Equation (5), the constants are A and φ. The constant A is called the amplitude.
The solutions to Equation (4) is dependent on the value assigned to those constants.
For each combination of constants, there is a solution. Figure 3 shows the plot of the
solution when A = 1, w = 2π, φ = −π/4.

Note that Figure (3) displays the dynamics of the platform based on the assump-
tions made in the introduction. We neglect the effects of damping, which allows the
platform to oscillate with a constant amplitude A and frequency w indefinitely. The
frequency is dependent on the natural properties of the platform and the spring that it
is on, more precisely, w =

√
k/M . The amplitude A is not dependent on the properties

of the system, but on the conditions of the situation.
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Figure 3: Plot of z = A sin(wt+ φ) with A = 1, w = 2π, φ = −π/4.

3 Effect of an Impulse on the Dynamics of the Platform

When we describe an impulse, we refer to a constant force F which is exerted on an
object for a brief period of time. We can define the impulse on this object as

J = F∆t . (6)

We also note that the momentum of an object, denoted by p, is defined as

p = mv , (7)

where v is the velocity of the object and m is the mass of the object. By Newton’s
Second Law of Motion, we know that when an object is subjected to an impulse, the
change in the momentum of the object is equal to the impulse. If the momentum of the
object immediately preceding and following the impulse are p1 and p2, respectively,
then

p2 − p1 = J . (8)

We now bring our attention back to the mechanics of the bridge. As we recall
from the previous section, the position of the platform as a function of time t is z =
A sin(wt+ φ), granted, the platform is not subjected to any external forces of any kind.
The constants A and φ dictate the one solution to Equation (5). As the platform is
introduced to an external impulse, Equation (5) becomes no longer valid. Assume
the platform is subjected to an impulse −J at a set time when t = t1. The formula
z = A sin(wt + φ) becomes valid only at time intervals when t! = t1. There will be
different intervals that are separated by each impulse that occurs, and each time inter-
val between the impulses will have its own set constants A and φ, based on the timing
and magnitude of the impulse. This is because the impulse at t = t1 will change the
momentum, and thus velocity, of the platform. Similar to how we divided the time
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intervals of t, we denote A = A1 and φ = φ1 as the values of these constants before
the impulse and A = A2 and φ = φ2 as the values after the impulse. With these new
values, we have

z =

{
A1 sin(wt+ φ1) if t < t1
A2 sin(wt+ φ2) if t > t1 .

(9)

We can obtain the constantsA2 and φ2 in terms ofA1 and φ1. We can do this because
we know that the position z remains continuous in the moment of the impulse, since
the amount of time elapsed between A1 and A2 or φ1 and φ2 is 0. We also know that
the change in momentum is equal to −J at t = t1. With these facts, we can create the
two following equations respectively

A2 sin(wt1 + φ2) = A1 sin(wt1 + φ1) (10)
MwA2 cos(wt1 + φ2) = MwA1 cos(wt1 + φ1)− J . (11)

For the purposes of simplifying the equation that we are about to produce, we
define the constant

I = J/Mw . (12)

After dividing the second of the Equations (10) by Mw, the system of equations in
Equation (10) becomes

A2 sin(wt1 + φ2) = A1 sin(wt1 + φ1) (13)
A2 cos(wt1 + φ2) = A1 cos(wt1 + φ1)− I . (14)

This new system of equations allows us to define A2 in terms of A1 and φ1. When
we square both equations, add them together, and take the square root, we are left with

A2 =
√
A2

1 − 2A1I cos(wt1 + φ1) + I2 . (15)

Now that we have created this equation forA2, we must find φ2. In order to do that,
we refer back to Equation (13). WhenA2 = 0, we can choose any value for φ2. IfA2 6= 0,
we define Θ = arcsin(A1 sin(wt1 +φ1)/A2). From the first equation of Equation (13), we
have the either wt1 + φ2 = Θ or wt1 + φ2 = π − Θ. We use the second equation from
Equation (13) to determine which of these two equations to use. Using this, we can
create the piece-wise function

z =

{
A1 sin(wt+ φ1) if t < t1
A2 sin(wt+ φ2) if t > t1.

(16)

We have two examples illustrated in Figure (4). We plot the graph of position of
the platform z(t) with the addition of an applied impulse. A dot is added to imply
the point at which the impulse is applied. The parameters for the left figure are A1 =
1, w = 2π, φ1 = −π/4, I = 0.3 and t1 = 3.1. The parameters for the right figure are
A1 = 1, w = 2π, φ1 = −π/4, I = 0.3 and t1 = 3.1. In the left figure, the amplitude of the
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Figure 4: Illustration of the change in the dynamics of the amplitude of the oscillations
of the platform when subject to an impulse represented by the solid dot.

oscillations decreased following the initial impulse. This occurred because the impulse
was applied at a point in time where the platform was moving upward, and because
the impulse applied a downward force, the impulse slowed the platform’s motion.
In the right figure, the amplitude of the oscillations increased after the impulse was
applied. Because the impulse occurred when the platform was moving downward, the
direction of the impulse, the force of the impulse is added to the platform’s momentum.
Thus, the velocity the amplitude of the oscillations increased.

4 The Mathematical Model of a Bridge With Pedestrians
Walking in Unison

We model the effects on the dynamics of the platform as it receives an impulse −J as
pedestrians walked across it in unison. There is a negative sign in front of J because the
impulse exerts a downward force on the platform. Each time a foot hits the platform
from a step taken by the pedestrians, there is an impulse. We make the assumption that
the pedestrians are making perfectly synchronized, timed steps. We set the constant T
to be a positive number to represent the time intervals at which each step will occur.
For instance, if T = 4, an impulse will be exerted on the platform every 4 units of the
selected time unit. We set tn = nT . The platform will be subjected to the impulse −J
each time t = tn, for every non-negative integer of n. We use this division of time
intervals and the equation from the previous section to have that

z = An sin(wt+ φn) if tn−1 < t < tn, where tn = nT . (17)

As we did before in the previous section, we define I = J/Mw. With this new
measurement of time intervals of the impulses, we can modify Equation (15) to account
for repeated step patterns. This leads to the equation for the amplitudes

An+1 =
√
A2

n − 2AnI cos(wtn + φn) + I2 and A0 = 0 . (18)
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Figure 5: Plot of z(t) where w = 2π, I = 0.2 and T = 1.2.

We set A0 = 0 to indicate that the platform was not oscillating prior to the initial
impulse −J from the first step of the pedestrians. We also have the equation φn+1 =
0, ifAn+1 = 0, otherwise

φn+1 =

{
arcsin

(
An

An+1
sin(wtn + φn)

)
− wtn if An cos(wtn + φn)− I > 0

π − arcsin
(

An

An+1
sin(wtn + φn)

)
− wtn if An cos(wtn + φn)− I < 0 .

(19)

In Figure 5, we see a plot for z(t). In this figure, w = 2π, I = 0.2 and T = 1.2. Note
that z(t) is a periodic function of of t and thus its amplitude remains bounded. We
see that |z(t)| < 0.16 for the whole sequence. The period of z(t) is 6. This can also be
interpreted by stating that, z(t+ 6) = z(t) for all values of t.

Observation: If there are positive integers m and k such that wmT = 2kπ and m
does not divide k, then z(t) is periodic with period mT , because the frequencies of the
impulses and the oscillations will not align consistently.

In the case of Figure 5, m = 5 and k = 6, which satisfies the conditions observed
because wmT = 2π5(1.2) = 12π and 2km = 2(6)π = 12π. As a result, Figure 5 corre-
sponds to nonresonant case.

In Figure 6, we again see a plot for z(t). However, in this example, w = 2π, I = 0.2
and T = 1. Note that in this case, z(t) is not a periodic function of t. The amplitude of
this platform will continue to grow linearly as time passes and will continue to grow
indefinitely. We have that z(n+ 3

2
) = nI for all positive integers of n.

Observation: If there are positive integers k such that wT = 2kπ, then the ampli-
tude of z(t) will grow linearly with time. More precisely, z ≈ − I

T
t sin(wt), where the

symbol ≈ means asymptotically as t becomes larger. The equation is an approxima-
tion of z(t), but a fairly accurate one, that will increase in accuracy the larger t is. This
example in Figure 6 is a resonant case. This corresponds to the given scenario of sol-
diers marching in unison to collapse the bridge. The bridge can collapse due to the
frequency of the footsteps corresponding to the frequency of the bridge.
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Figure 6: Plot of z(t) where w = 2π, I = 0.2 and T = 1.

5 Discussion

This article discussed the mathematical model of the effects of pedestrians on the dy-
namics of the bridge’s motion as they cross it in unison. The phenomenon displayed
in this instance is known as force oscillators. In our analysis of the example, we distin-
guish a resonant reaction and a nonresonant reaction to specific intervals of footsteps.
In the case of a resonant reaction, the amplitude of the oscillations would continue
to increase indefinitely, until either the pedestrians cease their footsteps or the bridge
breaks and collapses. This defined mathematical model does not consider many exter-
nal physical factors that would have an additional effect on the bridge, causing it to
slightly deviate from the given calculations.
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