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1 Introduction

In an article from the last issue of Parabola, Randell Heyman [1] used the Binomial
Theorem to show that, for each natural number n,

cn = (1 +
√
2)n + (1−

√
2)n

is an integer. It is natural to ask whether we can define the sequence using a simpler
formula or a recursive relation. It turns out there exists a nice and simple recursive
relation for this sequence.

2 Finding the recursive relation

Proposition 1. The sequence cn = (1 +
√
2)n + (1 −

√
2)n satisfies the following recursive

relation
cn = 2cn−1 + cn−2

with the initial conditions c1 = 2 and c2 = 6.

It is quick and easy to prove this proposition but instead of presenting a proof, let
us instead show how one might find the recursive relation in the first place.

For convenience, we denote

u =
√
2 + 1

v =
√
2− 1

so that uv = 1; then cn can be expressed as

cn = un + (−1)nvn

or, equivalently, as

cn =

{
un − vn , n is odd
un + vn , n is even.

We now search for recursive relations for the sequence cn for when n is odd and when
n is even.
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Case 1: n is odd.

We first write n = 2k + 1 for some positive integer k. Then cn can be factored out
and simplified by the identities uv = 1 and u− v = 2:

cn = u2k+1 − v2k+1

= (u− v)(u2k + u2k−1v + · · ·+ ukvk + uk−1vk+1 + · · ·+ v2k)

= 2(u2k + u2k−2 + · · ·+ u2 + 1 + v2 + v4 + · · ·+ v2k) .

Since n− 2 is also an odd number, the term cn−2 can be written as

cn−2 = 2(u2k−2 + · · ·+ u2 + 1 + v2 + v4 + · · ·+ v2k−2) .

Therefore,
cn − cn−2 = 2(u2k + v2k) = 2cn−1 .

We therefore find the recursive relation as follows when n is odd:

cn = 2cn−1 + cn−2 .

Case 2: n is even
Is the recursive relation for Case 2 the same as the relation for Case 1? Let’s calculate

the difference cn − cn−2:

cn − cn−2 = (un + vn)− (un−2 + vn−2)

= (un − un−2) + (vn − vn−2)

= un−2(u2 − 1) + vn−2(v2 − 1)

= un−2(2 + 2
√
2) + vn−2(2− 2

√
2)

= 2(un−2 + vn−2) + 2
√
2(un−2 − vn−2)

= 2cn−2 + (u+ v)(un−2 − vn−2)

= 2cn−2 + un−1 − vn−1 + un−2v − uvn−2

= 2cn−2 + cn−1 + un−3 − vn−3

= 2cn−2 + cn−1 + cn−3 .

Since both n− 1 and n− 3 are odd numbers, we can apply the relation from Case 1 to
cn−1 and cn−3. Then we have cn−1 = 2cn−2 + cn−3 and the difference is

cn − cn−2 = 2cn−2 + cn−1 + cn−3

= (2cn−2 + cn−3) + cn−1

= cn−1 + cn−1

= 2cn−1

which is the same as the recursive relation in Case 1.
Now that we have found the relation, we just need to find the initial conditions for it:

c1 = (1 +
√
2) + (1−

√
2) = 2

c2 = (1 +
√
2)2 + (1−

√
2)2 = 6 .
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3 Companion Pell numbers

With the recursive relation, we could calculate the elements of the sequence by hand.
However, it is convenient to use computer programmings to find the terms. The fol-
lowing MATLAB [2] code lists the first n elements of the sequence:

A=[2, 6];
n=input(’Enter the number of terms you want: ’);
for i=3:n

A(i)=2*A(i-1)+A(i-2);

end

The first ten terms of the sequence are

2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, . . . .

These numbers are known as Companion Pell numbers [3]. The elements of the
sequence grow so fast that MATLAB can only calculate up to the 805th companion Pell
number which is roughly 1.3628 × 10308. MATLAB will output “INF”, which means
infinity, for all terms from the 806th term onwards. In order to observe how fast these
terms are increasing, we plot the first 805 points (n, log10 cn) with the following MAT-
LAB code:

Seq=[2, 6];
for i=3:805

Seq(i)=2*Seq(i-1)+Seq(i-2);

end
plot(1:805, log10(Seq))
xlabel(’n’)
ylabel(’log {10}(c n)’)
title(’Logarithm of Companion Pell Numbers with base 10’)
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The output is the figure below, here tidied up slightly.

Logarithm of Companion Pell Numbers with base 10
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From the figure, we guess that y = log cn approaches a line as n grows large and we
can find the approximate value of the nth companion Pell number. If there is such an
asymptote for y = log cn, then what’s the slope of the asymptote? We can find the slope
by calculating the limit of the ratio log cn

n
.

Proposition 2. The nth companion Pell number approaches 10n(log
√
2+1) as n grows large.

Proof. Let’s first rewrite log cn by multiplying (1+
√
2)n for both the nominator and the

denominator:

log cn = log ((1 +
√
2)n + (1−

√
2)n)

= log
(1 +

√
2)2n + (−1)n

(1 +
√
2)n

= log

(
(
√
2 + 1)n +

(−1)n

(
√
2 + 1)n

)
.

As n goes to infinity, (
√
2 + 1)n goes to infinity and

(−1)n

(
√
2 + 1)n

goes to zero.

Therefore,

lim
n→∞

log cn
n

= lim
n→∞

log (
√
2 + 1)n

n

= lim
n→∞

n log (
√
2 + 1)

n

= log (
√
2 + 1) .

We conclude that log(cn) approaches n log (
√
2 + 1) as n grows large, and the line

y = n log (
√
2 + 1) is an asymptote of y = log cn. The nth companion Pell number cn

approaches 10n(log
√
2+1) as n grows large.
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