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Solutions 1631–1640
Q1631 As in Problem 1628, a path is labelled with the integers, and a person starting
at 0 moves one step at a time left or right according to the flip of a fair coin. In the
previous problem (whose solution appears in this issue), we found the probability that
the person is back at the origin after 2n steps. Now see if you can find the probability
that the person is back at the origin for the first time after 2n steps.

SOLUTION To get back to the origin for the first time after 2n steps, the person must
always be on the same side of the origin. It is easy to see that the two sides are sym-
metrical; so we shall find the probability that the person is always on the positive side
of the origin, returning to the origin at step 2n, and then double this probability.

Draw a graph of location against step number: it might look, for example, like the
following.

↑
right
left
↓

A path of the required type must start by moving from (0, 0) to (1, 1) and finish going
from (2n − 1, 1) to (2n, 0). In between, it must go from (1, 1) to (2n − 1, 1) without
ever touching the line y = 0. Paths from (1, 1) to (2n − 1, 1) must consist of n − 1 left
steps and n − 1 right steps, so by the argument in Problem 1628, the number of paths
is C(2n− 2, n− 1) altogether; we need to subtract the number of such paths which do

touch y = 0 at some point. Every path of this type looks something like the solid line
in the following diagram.

↑
right
left
↓

If we take the path from (1, 1) up to the first return to the origin and reflect it in the
horizontal axis (dotted line in the diagram), then we obtain a path from (1,−1) to
(2n − 1, 1), which must consist of n steps right and n − 2 steps left. The number of
paths is C(2n− 2, n), and so the number of paths we require is

(
2n− 2

n− 1

)

−
(
2n− 2

n

)

=
(2n− 2)!

(n− 1)! (n− 1)!
− (2n− 2)!

n! (n− 2)!

=
(2n)!

n!n!

[ n2

2n(2n− 1)
− n(n− 1)

2n(2n− 1)

]
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=
1

2(2n− 1)

(
2n

n

)

.

Dividing by the total number of paths consisting of 2n steps, and multiplying by 2 for
the reason explained above, gives the probability of first return to the origin at step 2n
as

f2n =
1

22n(2n− 1)

(
2n

n

)

.

Q1632 Take a point O inside a square; from this point draw 13 rays, all spaced at
equal angles. This will divide the square into 13 regions. Is it possible that all these
regions have equal area?

SOLUTION Suppose that 13 equally spaced rays from the point O divide the square
into 13 regions of equal area. As the rays meet the perimeter in 13 points, at least four
of these points must lie on the same side of the square. So we have a situation like this,

α

β β
β

M

︸ ︷︷ ︸

a

b b b

O

where β =
(
360

13

)
◦

. We shall measure lengths on the side of the square to the right of
M , and angles anticlockwise from OM ; so that in the example shown, the length a is
negative, as is the angle α. Note, therefore, that

−90◦ < α < α+ 3β < 90◦ .

Now by assumption, the three shaded triangles have equal areas; and they also have
equal altitudes h = OM ; therefore, they have equal bases b, as marked in the diagram.
From the four right–angled triangles in the diagram, we have

a = h tanα , a+ b = h tan(α + β) ,

a+ 2b = h tan(α + 2β) , a+ 3b = h tan(α + 3β) ;

therefore the points

(α, a) , (α + β, a+ b) , (α + 2β, a+ 2b) , (α + 3β, a+ 3b)
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all lie on the curve y = h tanx for −90◦ ≤ x < 90◦.

0 x

y y = h tanx

But these four points also satisfy the linear equation

y − a

b
=

x− α

β
;

that is, the four points are collinear; and this is impossible, as the section of the tangent
graph just shown clearly does not contain four collinear points. Thus, it is impossible
for an arrangement of 13 rays as described to divide the square into regions of equal
area.

Q1633 A right circular cone (with a closed base) is partially filled with water. The
base of the cone is placed on a table and the depth of water in the cone is found to be
10cm. The cone is then inverted so that its vertex is on the table and its base is parallel
to the table, and the depth of water is found to be 11cm. What height of empty space
is there now above the water surface?

SOLUTION Thanks to UNSW student Yuan Yuan Wang for the following solution.

We begin this problem by drawing the two different scenarios; that is, base of the cone
on table and vertex of the cone on table.

h

10

r1

r

11

r2

r

The volume of a right circular cone is V = 1

3
πr2h, where r is the radius of the base of

the cone and h is the height of the cone, so we apply this formula to find the volume
of water in the cone within both scenarios. Let the radius of the water surface in the
first scenario be r1 and in the second scenario r2, and finally let the height of the overall
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cone be h. Equating these two scenarios, we find that

Volume of water =
1

3
πr2h− 1

3
πr21(h− 10)

=
1

3
π(r2h− r21(h− 10))

=
1

3
πr22 × 11

(see figures above) and therefore

r2h− r21(h− 10) = 11r22 . (1)

To find the height of the empty space in the second scenario, we just need to calculate
what h− 11 is.

It’s clear from a similar triangles argument that

r1
r

=
h− 10

h
⇒ r1 =

r(h− 10)

h
(2)

r2
r

=
11

h
⇒ r2 =

11r

h
. (3)

Hence, we can now substitute equations (2) and (3) into equation (1) to give

r2h− r2(h− 10)2

h2
(h− 10) = 11

112r2

h2
⇒ h− (h− 10)3

h2
=

113

h2
.

Now, solving for h gives

h3 − (h− 10)3 = 113

h3 − (h3 − 30h2 + 300h− 1000) = 113

30h2 − 300h− 331 = 0

and so

h =
150±

√
32430

30
.

Since h > 0, then

h =
150 +

√
32430

30
≈ 11.00277 · · · cm

and
h− 11 = 0.00277 · · · cm ≈ 0.028mm .

Therefore, the height of empty space above the water surface is now around 0.028 mm.

Editor’s comment: it may be surprising how small this is – approximately the width
of one human hair!!
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Q1634 Let n be a positive integer which is the sum of the squares of 2k positive inte-
gers, and suppose that no more than half of these squares are the same. Prove that 2n
is also the sum of the squares of 2k positive integers. For example,

65 = 12 + 12 + 22 + 32 + 52 + 52

130 = 12 + 22 + 32 + 42 + 62 + 82 .

Conversely, let 2m be an even number which is the sum of the squares of 2k positive
integers. Suppose that no more than half of the odd squares are the same and no more
than half of the even squares are the same. Prove that m is also the sum of the squares
of 2k positive integers.

SOLUTION Suppose that n is the sum of 2k squares, no more than half of them the
same. Then the squares can be arranged into k pairs a21, b

2
1, . . . , a

2
k, b

2
k, where all the aj

and bj are positive integers and aj is never equal to bj : in fact, by symmetry we can
arrange things so that aj > bj in all cases. Then we have

n = a21 + b21 + · · ·+ a2k + b2k

and so

(a1 + b1)
2 + (a1 − b1)

2 + · · ·+ (ak + bk)
2 + (ak − bk)

2

= 2a21 + 2b21 + · · ·+ 2a2k + 2b2k = 2n ;

all of the terms aj ± bj are positive. Therefore, 2n is also the sum of squares of 2k
positive integers.

Comment. The condition that no more than half the squares are the same is vital: if
this is not the case, then the conclusion may not be true. For example, 7 = 1+ 1+ 1+ 4
is the sum of four positive squares, but you can check by trial and error that 14 is not
the sum of four positive squares.

For the second part of the question, suppose that 2m is the sum of 2k squares satisfy-
ing the stated condition. Since 2m is an even integer which is the sum of odd and even
squares, there must be an even number (possibly none) of odd squares. Since no more
than half of these odd squares are the same, we can pair them up in the same manner as
above: a21, b

2
1, . . . , a

2
l , b

2
l , where all aj and bj are odd and aj > bj . Since there are an even

number of odd squares in an even number (2k) of squares altogether, there must also be
an even number of even squares and we can pair them up likewise: a2l+1

, b2l+1
, . . . , a2k, b

2
k,

where all these aj and bj are even and aj > bj . Now note that for every j, the integers
aj , bj are both odd or both even; so the integers aj + bj and aj − bj are always even. This
means that we can write a sum of squares of positive integers

(a1 + b1
2

)2

+
(a1 − b1

2

)2

+ · · ·+
(ak + bk

2

)2

+
(ak − bk

2

)2

=
a21 + b21 + · · ·+ a2k + b2k

2
=

2m

2
= m ,

and we have shown that m is the sum of 2k positive squares.
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Q1635 Suppose that

x =
1

1× 2
+

1

3× 4
+

1

5× 6
+ · · ·+ 1

2021× 2022

and

y =
1

1012× 2022
+

1

1013× 2021
+

1

1014× 2020
+ · · ·+ 1

2022× 1012
.

Find the value of x/y.

SOLUTION Firstly, for any k we have

1

(2k − 1)(2k)
=

1

2k − 1
− 1

2k
;

hence,

x = 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2021
− 1

2022

= 1 +
1

2
− 2

2
+

1

3
+

1

4
− 2

4
+ · · ·+ 1

2021
+

1

2022
− 2

2022

= 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

2021
+

1

2022
− 1− 1

2
− · · · − 1

1011

=
1

1012
+

1

1013
+ · · ·+ 1

2022
.

Secondly, for any k we have

1

(1011 + k)(2023− k)
=

1

3034

( 1

1011 + k
+

1

2023− k

)

;

and y is the sum of all these expressions for k = 1, 2, 3, . . . , 1011. That is,

y =
1

3034

( 1

1012
+

1

2022
+

1

1013
+

1

2021
+ · · ·+ 1

2022
+

1

1012

)

=
1

3034

( 1

1012
+

1

1013
+ · · ·+ 1

2022

)

+
1

3034

( 1

2022
+

1

2021
+ · · ·+ 1

1012

)

=
2

3034

( 1

1012
+

1

1013
+ · · ·+ 1

2022

)

and so x/y = 1517.

Q1636 In a right–angled triangle, a string with length equal to the hypotenuse is laid
along the longer side, with the excess then going around the right angle and being laid
along part of the shorter side. Find the maximum possible proportion of the shorter
side covered by string, and the triangles which yield this maximum.
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SOLUTION Let the sides of the right–angled triangle be a and b, with a ≤ b; so that
the length of the string is

√
a2 + b2 . Then the length of string laid along the shorter side

is
√
a2 + b2 − b, and the proportion covered is

p =

√
a2 + b2 − b

a
.

Setting x = b/a, this can be written

p =
√
1 + x2 − x =

1√
1 + x2 + x

.

If x increases, the denominator of this fraction always increases and so p decreases;
therefore, the maximum value of p occurs with the minimum value of x. And since
x = b/a with b ≥ a, this gives a minimum value x = 1 and a maximum value p =√
2 − 1. In this case we have b = a, so the triangles in question are isosceles right–

angled triangles.

Q1637 Find the smallest multiple of 8642 which ends in the digits 2468.

SOLUTION To find a solution we can just repeat the method used to solve Prob-
lem 1625 (see solution in the previous issue of Parabola). Even easier, we can just
take the answer to that problem, 4321× 9954 = 43011234, and double both sides to get

8642× 9954 = 86022468 .

However, this time we have not found the smallest solution. In this case, the associated
equation (see previous solution for an explanation)

8642x = 10000y + 2468

can be simplified to
4321x = 5000y + 1234 ,

the general formula for x is

x = 9954 + 5000t where t is an integer,

and we get the smallest positive solution by choosing t = −1. Therefore, the smallest
multiple of 8642 which ends in the digits 2468 is

8642× 4954 = 42812468 .
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Q1638 A toy game designer devised a game consisting of 41 solid marbles. She no-
ticed that a rectangular box for 40 marbles, packed as shown, is only π/4 ≈ 79% full.
How did she manage to fit one more marble into the box?

SOLUTION

Let the radius of each marble be 1, so that the dimensions of the box are 16 by 10. In
the above diagram, we have AB = 2AD = 2

√
3 . Thus the horizontal width of the new

arrangement of marbles is 2 + 8
√
3 , which is less than 16; so the arrangement fits into

the same box.

Q1639 What is the largest integer that cannot be expressed in the form 99a + 100b +
101c, where a, b, c are non–negative integers?

SOLUTION We can place all possible values of n = 99a + 100b + 101c into groups
according to the value of k = a+b+c. For example, group 0 corresponds to a+b+c = 0,
giving only one possibility: (a, b, c) = (0, 0, 0) and n = 0. Another example: group 2
corresponds to a+ b+ c = 2, giving six possible triples

(a, b, c) = (2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1), (0, 0, 2)

and five different values
n = 198, 199, 200, 201, 202 .

The smallest integer in group k is n = 99k, given by (a, b, c) = (k, 0, 0); and the largest
is n = 101k, given by (a, b, c) = (0, 0, k). Furthermore, all intermediate integers are
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also found in group k. To see why this is true, imagine a basket containing k balls, all
labelled 99; the total of all labels is 99k. We can, one at a time, replace a “99 ball” by a
“100 ball” or a “100 ball” by a “101 ball”; each time we do this, the total increases by 1;
and so we obtain every possible integer up to the point at which all k balls are labelled
101 and the total is 101k.

To find all possible values of n we need to take all groups collectively. Now, as we
have just seen, group k consists of a sequence of consecutive integers; so does group
k + 1; and there is a gap between these groups if and only if

101k + 1 < 99(k + 1) ,

which can be solved to give k < 49. Thus, group 48 goes up to n = 4848; group
49 starts at n = 4851; the intermediate values 4849 and 4850 are not in any group
and are therefore not possible values of n. Moreover, there is no gap between group
49 and group 50; nor between group 50 and group 51; and so on. So there are no
further missing values of n, and the largest integer which cannot be written in the
form 99a+ 100b+ 101c is 4850.

Q1640 Recall that in Problems 1617 and 1630 we made the following definitions:

• F is the set of all dyadic fractions, that is, fractions in which the denominator is a
power of 2; and for any set X , we write aX + b for the set of all numbers which
can be written ax+ b, where x is in X .

• A set is locally finite if it has only finitely many elements in any finite interval of
the real number line.

• A set X is called “important” if

(2X)⊕X and (X + 1

2
)⊕X are both locally finite,

where (2X) ⊕ X denotes the set of numbers which are in 2X or X but not both,
and similarly for the second expression.

Now if a is any integer and m is a positive integer, we write Sa,m for the set of all dyadic
fractions s/2n such that s has remainder a when divided by m: that is,

Sa,m =
{ s

2n

∣
∣
∣ n ≥ 0 and s divided by m has remainder a

}

.

(a) Show that none of the sets Sa,m is locally finite.

(b) Show that none of the sets Sa,m is locally finite.

(c) Show that if a is odd and m is a power of 2 (that is, m = 2l for some l ≥ 1), then
Sa,m is important; and that no two of the sets

S3,4 , S5,8 , S9,16 . . . , S2k+1,2k+1

have any elements in common.
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Comment. The point of the question is this: we proved last issue that if either X or X
is locally finite, then X is important. The present question shows that there are further
types of important sets which we have not yet seen.

SOLUTION The argument for parts (a) and (b) is very similar to that in part (a) of
Problem 1622. Consider any interval p < x < q, and let k be a positive integer such that

1

2k
<

q − p

m
.

Then for any n ≥ 0, the interval

p2k+n < x < q2k+n (∗)

has length greater than m2n. It can therefore be split into 2n intervals of length m, each
of which contains an integer s giving remainder a when divided by m. For each such s
we have

s

2k+n
is in Sa,m and p <

s

2k+n
< q ;

so Sa,m has at least 2n elements in the interval from p to q. And since n can be chosen
as large as we like, Sa,m contains infinitely many numbers in this interval. Therefore,
Sa,m is not locally finite.

For (b), once we have split the interval (∗) into 2n intervals of length m, each interval
contains an integer which does not give remainder a when divided by m. (In fact, each
interval contains m − 1 such integers – all those other than the s in part (a).) And by
exactly the same argument, each such integer s satisfies

p <
s

2k+n
< q and

s

2k+n
is not in Sa,m .

Thus Sa,m has at least 2n elements in the interval from p to q, and hence is not locally
finite.

Now let X = Sa,m with a odd and m = 2l, l ≥ 1; we shall show that both (2X)⊕X
and (X+ 1

2
)⊕X are locally finite. First, if x is in X then x = s/2n, where s has remainder

a when divided by m; and we can write

x = 2
( s

2n+1

)

,

which shows that x is also in 2X . So it is impossible for any element to be in X but not
2X , and therefore (2X)⊕X consists of dyadic fractions which are in 2X but not in X .
The fractions in 2X are x = 2(s/2n), and the only way for this not to be in X is when
n = 0. That is, x = 2s; so all elements of (2X) ⊕ X are even integers; and there are
only finitely many of these in any interval p < x < q on the real line. Thus, (2X)⊕X is
locally finite.

Next we consider (X + 1

2
)⊕X . Let x = s/2n with s odd, and suppose that n ≥ l+ 1.

Then

x is in X +
1

2
⇔ s

2n
− 1

2
is in X
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⇔ s− 2n−1

2n
is in X

⇔ s− 2n−1 has remainder a when divided by 2l

⇔ s has remainder a when divided by 2l

⇔ x is in X .

This shows that dyadic fractions with denominator 2l+1 or greater must be in both X+ 1

2

and X , or in neither. Therefore, (X + 1

2
)⊕X contains only fractions with denominator

2l or less; and there are only finitely many of these in any finite interval of the real line;
so the set is locally finite.

To show that no two of the given sets have any elements in common: a dyadic
fraction in two of the sets must be say

2k + 1 + s2k+1

2n1
=

2l + 1 + t2l+1

2n2
,

where by symmetry we may assume k < l. Since the numerators are odd and the
denominators are powers of 2, both fractions are in lowest terms; therefore the powers
in the denominators are the same, and we have

2k = 2l + t2l+1 − s2k+1 .

But this is impossible since the right hand side is a multiple of 2k+1 and the left hand
side is not. Therefore, no two sets in (∗) can share any elements.

11


