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Mathematics and Music: finding and characterizing equally

tempered scales using continued fractions approximations
Daniel Chioffi,' Stefan O. Nita,” Vlad N. Nita®> and Bogdan G. Nita*

1 Introduction

Music predates modern humans, and musical instruments were most likely built at
the same time as the first tools: from the rocks banged together to produce rhythmical
sounds, to animal skins stretched into drums and animal bones with holes drilled into
them to create flute-like instruments. The fascination for music survived through the
ages and with each generation it grew stronger as the instruments and the sounds
they produced became more diverse and complex. As the science progressed, many
subjects were applied and sometimes developed to study musical instruments and
musical theory: algebra, geometry, physics, differential equations, fluid mechanics and
so on.

In this paper we look at musical scales, particularly equally tempered scales, which
are the foundation of modern Western music. We describe the idea behind the most
common number of notes in the scale (12 notes in an octave) and look at ways of de-
veloping scales with a higher number of notes. In this context we use mathematical
approximations, in particular continued fractions, to approximate irrational numbers
with optimal fractions. We also develop an algorithm to classify musical scales with
any number of notes to an octave based on their consonance.

2 Pythagorean scales

An early record of a scientific study of music and musical instruments comes in the
form of a legend from around 500BC when Pythagoras observed that the pitch of the
sound produced by a string is related to its length: halve the length of the string and
you raise the pitch by an octave, two-thirds the original length raises the pitch by a
tifth, and so on [3]. Some of the sounds produced by these strings were classified
as pleasant when played together (consonant) while others were not (dissonant). In
particular, when the ratios between lengths of the strings involved small integers (like
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2:1 or 3:2), the sounds were more consonant than those of larger integers or random
numbers.

The story goes on to say that Pythagoras used the two most consonant musical
intervals (the octave and the fifth) to build the first scale [8]. The idea behind such
a scale is to start with a reference octave, say C4-C5 and add to the first note (C4) a
perfect fifth interval to discover the next note in the scale (G4). The frequency ratio
between G4 and C4 is therefore 3:2 (see Table 1 below). Adding another perfect fifth
interval to G4, we obtain a frequency ratio of 9:4 (with respect to C4) which is outside
of our octave. Reducing this interval by an octave (by dividing this frequency ratio by
2), we obtain a ratio of 9:8 which is the third note in the scale (D4). Continuing this
algorithm we can discover all the notes in the scale (see Table 1). For simplicity we
have listed the ratios of the main 7 notes and omitted them for the sharps. Note that, in
this system, adding/subtracting intervals amounts to multiplying/dividing frequency
ratios, which is why it is commonly referred to as a logarithmic scale (more about this
will be discussed later).

Note | C4 | D4 | E4 | F4 | G4 | A4 B4 C5
Ratio | 1:1 | 9:8 | 81:64 | 4:3 | 3:2 | 27:16 | 243:128 | 2:1

Table 1: One octave of the Pythagorean scale of C major and the corresponding fre-
quency ratios for the 7 main notes in the scale

The Pythagorean scale is based on the assumption that going up 12 fifths and com-
ing down 7 octaves will return you exactly to the same starting note, or, in other words,
that

219 ~ 312 (1)

These numbers are indeed close; however they are not equal to each other and this
assumption leads to certain problems specific to the Pythagorean scales. Among the
issues are dissonant musical intervals, like the third, which are supposed to be conso-
nant. Other scales were later developed to alleviate some of these problems, for exam-
ple the just intonation, meantone temperament and equal temperament scales [1] .

Before discussing other scale systems, we look at an interesting way of representing
frequency ratios in real numbers using logarithms. Each frequency ratios can be trans-
formed via the logarithmic function log, to a unique real number which represents that
particular musical interval. For example, a frequency ratio of 3:2, representing a fifth,
is now an interval of log, 2 = 0.5849625 .. ; a frequency ratio of 2:1, representing an
octave, is now an interval of log, % = 1 and so on (see Table 2). Products and frac-
tions of frequency ratios correspond to sums and differences of their real logarithmic
representations, which is more intuitive.

One interesting take from this representation is that the length of one octave is
equal to 1, while the length of a perfect fifth is the irrational number log, . In a scale
system based on the Pythagorean approach, we are trying to add multiples of this
irrational number to get an integer number; this is impossible and therefore leads to



Note | C4 | D4 E4 F4 G4 A4 B4 | C5
Real | 0 | 0.16.. | 0.33.. | 0.41.. | 0.58.. | 0.75.. | 0.92.. | 1

Table 2: One octave of the Pythagorean scale of C major and the real number represen-
tations of the 7 main notes in the scale.

the problems described above. In the next section, we will look at equally tempered
scales which were developed as a compromise aimed at fixing some of these issues
present in Pythagorean scales.

3 Equally tempered scales

The idea behind equally tempered scales is very simple: take the interval [0,1], which
represents one octave of a scale, and equally split it into 12 sub-intervals. The resulting
end-points of this partition are defined as the notes in the scale (see Table 3 below).

Note | C4 | D4 | E4 | F4 | G4 | A4 | B4 | C5

2 | 4 15 |7 | 9 | 11
Real | 0 | 5 |5 |55 15111 ¢

Table 3: One octave of the 12-note equally tempered scale of C major and the real
number representations of the 7 main notes in the scale.

The equal temperament scale makes all the tones and semitones equal to each other.
It is designed to correct all the issues associated with the Pythagorean scales by dis-
tributing the dissonance occurring in different intervals throughout the entire scale.
It is obvious that the original intervals like the perfect fifth no longer have frequency
ratios represented by small integers. However, the advantage is that these highly con-
sonant intervals are going to sound the same (and still relatively consonant) in any key
and any pitch. Because of its homogeneity and universality, all modern instruments
are tuned in this scale and all Western, modern music is based on musical intervals
relative to this equally tempered scale.

We are going to take a closer look at the original interval that we discussed, the
perfect fifth, in this new scale. Notice from Table 3 that the perfect fifth has a length
of % units, and this can be understood in the sense that, in the C major scale, the note
G is the 7-th note out of a total of 12 notes. It is also an approximation of the original
interval representing the perfect fifth
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This points to the idea that finding rational approximations to the irrational number
log, (2) could lead to the discovery of new scales, where the denominator of the ratio-
nal approximation represents the total number of notes in the scale, and the numerator
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represents the position of the perfect fifth relative to the first note in the scale. The-
oretically finding these approximations can be done for any interval in the scale, but
logically one wants to do it for the most consonant musical interval (the perfect fifth)
in order to control this approximation and to discover a scale in which the perfect fifth
interval has a high degree of consonance.

There are many methods for approximating irrational numbers with rational frac-
tions. For example, a simple, brute, method would be to just truncate the infinite num-
ber of decimals after the decimal point, e.g.,

29

3
log, ( =) = 0.584962500721.... ~ 0.58 = = .
0g2<2> 0.5849625007 058 =

This approximation would indicate the possibility of using a scale with 50 notes to an
octave with the perfect fifth located at note 29 with respect to the first note. There are
some obvious issues with this method: for example, large numerators (and therefore
a large number of notes to an octave in the scale); numerators increasing very quickly
from one approximation to the next (and therefore providing a extremely small num-
ber of useful examples); and the lack of flexibility in the number of notes to an octave
(always multiples of 10 or their divisors).

In this paper, we focus exclusively on the method of continued fractions to pro-
duce rational approximations to irrational numbers. The method and examples are
discussed in the next section.

4 Continued fractions

A continued fraction is an expression of the form

N 1
ap+ ————71
1
a1 + gt —1
2 a3+...

where q; are integers and usually positive for any ¢ > 0. This expression can go on to
infinity or it can stop after a finite number of iterations. Every real number has a con-
tinued fraction representation and it is not difficult to see that irrational numbers yield
an infinite such expression while the rational numbers have finite representations. For
example,

1
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To get a good approximation for irrational numbers, one has to stop just before a large
value of g;. In the example above, stopping the continued fraction for 7 just before 15



produces the famous approximation

22

= 7 .

Another possibility in the same example would be to truncate the continued fraction
just before 292 (another large a;) would produce the approximation

355
TR ——
113

and so on. Both approximations are very good rational approximations of 7; however,
the first is more useful as it contains smaller numbers which are easier to handle in
mathematical calculations.

The many properties and applications of continued fractions are described in clas-
sical books like [4, 5] and a comprehensive review of them is beyond the scope of this
article.

We instead focus on applying this method to discover equally tempered scales with
a consonant perfect fifth interval. As described above, we will use continued fractions
to approximate the irrational number log, (2) to obtain
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and so on. Some notable truncations of this expansion are as follows. If we stop just
before a; = 3, then we obtain the approximation
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which indicates an equally tempered scale with 12 notes to the octave and a perfect
tifth interval located at the 7th note. This is the modern Western scale currently used
today in all music compositions. If we stop just before the a; = 5, then we obtain the

approximation
lo EAPOEL
22\2) " 53

which indicates an equally tempered scale with 53 notes to the octave and a perfect
tifth interval located at the 31st note. This scale was well known in the 18th century [2]
when a generalized keyboard was build with the capability of playing all 53 notes in
an octave. The next logical truncation of the continued fractions would be right before
ag = 23, which would give the approximation

3 389
logy | = )| = —
2 665
5For more information on continued fractions, read the excellent Parabola article Integer Points, Con-
ics and Continued Fractions by Peter Brown; see also the earlier Parabola article here.
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indicating an equally tempered scale with 665 notes to the octave and a perfect fifth
interval located at the 389th note. However, the benefits of getting a better approxi-
mation to the fifth interval (and therefore a more consonant fifth) are outweighed by
the large number of tones in the scale, with consecutive tones being indistinguishable
from each other and the impossibility of building instruments capable of reproducing
all these notes.

One way of studying the accuracy of the continued fractions approximations is by
using the Hurwitz Theorem [5], which states that, for every irrational number &, there
are infinitely many relatively prime integers m and n such that

-2l
n \/577,2 '

The theorem provides a way of testing the quality of rational approximations to irra-
tional numbers: a good approximation “* to an irrational { will be within ﬁ distance
of it. Following [6], if we denote the approximation error by £ and the Hurwitz bound
by M, then the size of the ratio £/M provides an indication of the quality of the ap-
proximation: the smaller the ratio, the higher the quality of the approximation. These
characteristics are captured in Table 4 for our previous example, the irrational number
7, and for log, (2).

Irrational number | Approximation Error £ Hurwitz bound M | E/M
7r 22/7 0.001264489267 | 0.009126808071 | 0.139

355/113 0.000000266764 | 0.000035023384 | 0.008

log, (2) 7/12 0.001629167388 | 0.003105649969 | 0.525
31/53 0.000056840343 | 0.000159207403 | 0.357

389/665 0.000000094706 | 0.000001011280 | 0.094

Table 4: Hurwitz characteristics for different continued fractions approximations for
the irrational numbers 7 and log, (2)

The small values in the last column in Table 4 above are an indication of the high
quality of the rational approximations. It is also a confirmation that the method of
truncating a continued fraction just before a large value of a; leads to a good rational
approximation of the particular irrational number.



5 Consonance score

To differentiate between all the equally tempered scales described above, we have de-
veloped an algorithmic approach to characterizing them based on their level of con-
sonance. It has long been known that musical intervals like the fifth, the third etc.
have higher degree of consonance than other random intervals. Plomp and Levelt [7]
ranked six of the most consonant musical intervals as seen in Figure 1.
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Figure 1: A dissonance curve for a 6-partial complex tone (from [7]). Vertical lines
represent the location of the musical notes in a 12-note equally tempered scale.

Starting with any equally tempered scale (containing between 1 and 100 notes
to an octave), we assign a consonance score based on the differences between the
Pythagorean notes (the peaks of the curve in Figure 1) and the closest note from the
equally tempered scale (vertical lines in Figure 1). The reciprocal of each difference is
weighted according to the relative dissonance scores of the six ratios in Figure 1, where
a lower dissonance score equates to a higher consonance and relative weight. These
are then added together to obtain the consonance score for that scale. Note that the
vertical lines in Figure 1 will change based on the number of notes in the equally tem-
pered scale that we are scoring, while the peaks of the consonance curve will not. The
results of this test are shown in Figure 2.

Surprisingly, the highest score is assigned to the scale with 53 notes to the octave
indicating a scale with highly consonant musical intervals. Other notable scales are 19,
38, 41, 75, 94 and others. The 12-note scale does not get an exceptional score in this
system; however it is worth mentioning that it is the scale with the lowest number of
notes where a consonance peak occurs.
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Figure 2: Consonance scores for all equally tempered scales with a number of notes up
to 100 in an octave. The red dots indicate the score for the 12-note, 53-note, 75-note and
94-note scales.

6 Conclusions

In this paper we looked at equally tempered musical scales, and in particular at the
reasons for having scales with 12-notes in an octave. We outlined methods for devel-
oping equally tempered scales with a higher number of notes in one octave based on
continued fractions approximations. We also described several approaches for rank-
ing the scales based on the consonance of the classical musical intervals like the perfect
fifth.

Besides the interesting results described in this paper, the work had a highly edu-
cational value for the authors, exposing them to subjects from algebra, approximations
theory, musical scales and computer programming. Although mathematics and music
seem at opposite sides of the scientific spectrum, it is refreshing to combine the rigour
of mathematics with the flexibility and creativity of arts.

References

[1] J.M. Barbour, Tuning and Temperament: A Historical Survey, Michigan State Col-
lege Press, E. Lansing, 1951.

[2] R. Bosanquet, Musical Intervals and Temperaments, Macmillan and Co. 1876.

[3] The Cambridge History of Western Music Theory, Cambridge University Press,
2002.

[4] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford
University Press, Fifth edition, 1980.



[5] L.-K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin/New York,
1982.

[6] T. Phillips, The Most Irrational Number, American Mathematical Society Feature
Column, August 1999.

[7] R. Plomp and W.].M. Levelt, Tonal consonance and critical bandwidth, JASA 38
(1965), 548-560.

[8] W.A. Sethares, Tuning, Timbre, Spectrum, Scale, Springer 2005.



	Introduction
	Pythagorean scales
	Equally tempered scales
	Continued fractions
	Consonance score
	Conclusions

