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Infinite products and their applications to infinite series
Sarthak Sahoo1

1 Introduction

In mathematics, people have dealt with infinities in different forms, including infinite
products. The study of infinite products appeared, among other places, in the 1593
works of François Viète [1, pp. 94–95] on the quadrature of the circle; that is, Riemann
sums to find the area of a circle:
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An infinite product is more generally written as a1a2a3 · · · where ai ∈ R or, using some
useful notation, as

P =
∞∏
n=1

an . (2)

A natural question that comes to the mind in the evaluation of the infinite products is
whether they converge to some limiting value. For instance, the first of the following
three products converges to 0; the second tends to infinity; and the third does not
converge to any number:
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n
= 1× 1

2
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3
× · · ·

∞∏
n=1

n = 1× 2× 3× · · ·
∞∏
n=1

(−1)n = 1× (−1)× 1× · · · .

Interestingly, we will soon see that there are criteria for when infinite products con-
verge. This article is an introduction to the topic of infinite products and a treatment
of some of the very elegant results in this area of mathematics. Leonhard Euler (1707
– 1783) was a pioneer in this area (and in most) areas of mathematics. Below is one of
his formulas that expresses the famous Riemann zeta function as an infinite product of
primes:

ζ(s) =
∞∑
n=1

1

ns
=
∏

p prime

1

1− p−s
.

This is extremely important in number theory and is related to the Riemann Zeta Con-
jecture which is one of the million-dollar Millenium Problems posed by the Clay Math-
ematics Institute.

1Sarthak Sahoo is a student in second year studying mathematics honours at UNSW Sydney.
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2 Convergence of an infinite product

It turns out that it is useful to write the product (2) as

P =
∞∏
n=1

(1 + bn) , (3)

where bn = an − 1 for all n = 1, 2 . . . . By taking the natural logarithm on both sides of
the above expression, we turn the product into a sum:

ln(P ) = ln

(
∞∏
n=1

(1 + bn)

)
=

∞∑
n=1

ln(1 + bn) .

Therefore,

P = exp

(
∞∑
n=1

ln(1 + bn)

)
.

Now we have an infinite sum, we can apply the comparison test to determine conver-
gence. Using calculus, it is not hard to show that

ln(1 + x) ≤ x for all x ≥ 0 .

It follows that if bn ≥ 0 for all n ≥ 0, then
∞∏
n=1

(1 + bn) = exp

(
∞∑
n=1

ln(1 + bn)

)
≤ exp

(
∞∑
n=1

bn

)
. (4)

Therefore, if
∞∑
n=1

bn

converges, then so will

P =
∞∏
n=1

(1 + bn) .

However, the converse may not hold.

Moreover, we can prove that the infinite product P =
∏∞

n=1 an =
∏∞

n=1(1 + bn) is
completely dependent on the infinite series

∑∞
n=1 bn for convergence. To do this, we

can use the Weierstrass inequality

1 +
∞∑
n=1

bn ≤
∞∏
n=1

(1 + bn) (5)

together with (4) to get the inequalities

1 +
∞∑
n=1

bn ≤
∞∏
n=1

(1 + bn) ≤ exp

(
∞∑
n=1

bn

)
. (6)

From this, we can see that the product P =
∏∞

n=1 an converges exactly when the series∑∞
n=1 bn converges, and we can often use comparison tests to check whether the latter

is true.
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3 Evaluation of certain products

3.1 Application of the convergence of an infinite product

To apply our observations in the previous section, consider the following example.

P1 =
∞∏
n=2

(
1− 1

n2

)
. (7)

Note that if S =
∞∑
n=2

−1

n2
converges, then so does P1. The convergence of S is well

known due to Euler: it equals −π2

6
. Hence, P1 converges to some number. Let us now

find that number. Much like we have telescoping sums in infinite series, we also have
telescoping products in infinite products, and this is one of those.

P1 =
∞∏
n=2

(n− 1)(n+ 1)

n2
=

(
1× 2× 3× · · ·
2× 3× 4× · · ·

)(
3× 4× 5× · · ·
2× 3× 4× · · ·

)
=

1

2
.

Note that these calculations are only justified since the convergence of the infinite prod-
uct P1 was established before. We also could have found the value of P1 by looking at
the partial products:

lim
n→∞
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n=2
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n2

= lim
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(
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2× 3× · · · × n
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3× 4× · · · × (n+ 1)

2× 3× · · · × n

)
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n→∞

n+ 1

2n
=

1

2
.

3.2 A result of François Viète

Let us show the infinite product (1) due to François Viète, namely
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Define

f(x) =
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2

and note that the sequence of terms in the formula (8) has the recurring pattern:
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fn(0) =

n times︷ ︸︸ ︷
f(f(f(· · · f(0))))

...

The product (8) can therefore be represented as

∞∏
n=1

fn(0) .

Note that if we set x = cos(2θ) and suppose that 0 ≤ θ ≤ π
2
, then

f(cos(2θ)) =

√
1 + cos(2θ)

2
=

√
cos2 θ = cos θ .

We will now use the formula

sinx

x
=

∞∏
n=1

cos
( x

2n

)
. (9)

This formula is quite simple to prove. Indeed, first note that

lim
y→0

sin y

y
= cos 0 = 1 (10)

and calculate:

sinx = 2 sin
(x
2

)
cos
(x
2

)
= 2

(
2 sin

( x

22

)
cos
( x

22

))
cos
(x
2

)
= · · ·

= 2n sin
( x

2n

) n∏
k=1

cos
( x

2k

)
.

By dividing both sides by x and taking the limit n → ∞, the limit (10) gives us (9).

Now evaluate that expression in x = π
2
:

2

π
=
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2
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)
· · · . (11)
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We have shown above that f(cos(2θ)) = cos θ, so

f(0) = f
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3.3 Differentiation of infinite products and the ratio test

Differentiation of an infinite product would only be meaningful if we know the interval
of convergence for our infinite product. Note that if the product

P =
∞∏
n=1

(an) = exp

(
∞∑
n=1

ln(an)

)

converges, then ln(an) must tend to 0 as n grows, so limn→∞ an = 1. This implies that∣∣∣∣ limn→∞

ln(an+1)

ln(an)

∣∣∣∣ ≤ 1 .

One can find the interval of convergence using the above ratio test.

Let us calculate this interval for the product expansion (11) of
sinx

x
. First note that,

by the Chain Rule for differentiation,

d

dx
ln cosx =

d
dx

cosx

cosx
= − sinx

cosx
= − tanx .

Therefore, L’Hôpital’s rule implies that

lim
n→∞

∣∣∣∣∣ ln cos
(

x
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)
ln cos

(
x
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) ∣∣∣∣∣ = lim
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∣∣∣∣∣12 tan
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(
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) ∣∣∣∣∣ ≤ 1

2
≤ 1 .

Therefore, we have that the product (11) converges, and hence we can differentiate the
formula:

d

dx

sinx

x
=

d
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(
exp

(
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ln cos
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)))
.

Evaluating each side of the above formula gives

x cosx− sinx

x2
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( x
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)
·

∞∑
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1
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( x
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)
.
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By (11),
cos(x)

x
− sin(x)

x2
= −sin(x)

x

∞∑
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1

2n
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( x
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)
,

which implies that
1

x
− 1

cotx
=

∞∑
n=1

1

2n
tan
( x

2n

)
. (12)

4 The Basel Problem

This is one of the problems that I cherish and spent a lot of time to trying to prove,
mostly because it’s quite an elementary and primary problem in the study of infinite
series. The Basel Problem was proposed by Pietro Mengoli in 1650 and solved by
Leonhard Euler in 1734 [2]. The problem is to find the closed form of the series

∞∑
n=1

1

n2
. (13)

To prove the Basel Problem, we begin by establishing the convergence of the series.
Since

an =
1

n2

is monotonic decreasing and ∫ ∞

1

1

x2
dx = 1 ,

the integral test implies that the sum (13) converges. To find the value that it converges
to, first note that
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By continuing this iteration n times, we get

sin θ = 22
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)
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· · · sin

(
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)
.

Note that the last two factors above can be written as
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(
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)
and sin

(
π − π − θ
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)
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(
π − θ
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)
.
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Hence,

sin θ = 22
n−1 sin
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)(
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(
π + θ
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))(
sin
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(14)
where the last factor is

sin

(
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)
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(
π

2
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)
= cos

θ
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.

Now note that

sin

(
π + θ
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)
sin

(
π − θ
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)
= sin2

( π
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)
− sin2

(
θ
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.

Therefore, writing u = 2n, we see that

sin θ = 2u−1 sin

(
θ

u

)(
sin2

(π
u

)
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(
θ

u

))(
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)
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Dividing (15) on both sides by sin θ
u

and letting θ → 0, the limit (10) implies that

u = 2u−1
(
sin2

(π
u

))(
sin2

(
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u
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· · · (16)

Now divide (15) by (16) to get

sin θ = u sin

(
θ

u

)(
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sin2
(
θ
u

)
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(
π
u

))(1− sin2
(
θ
u

)
sin2

(
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u
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Finally, use (10) again, together with the limit u → ∞ and some rearrangement of
terms:

sin θ

θ
=

(
1− θ2

π2

)(
1− θ2

(2π)2

)
· · · (17)

This is the famous Euler product representation for sin θ; see [3]. Now expand (17) and
consider the coefficient of θ2:

−
(

1

π2
+

1

4π2
+

1

9π2
+ · · ·

)
. (18)

The Maclaurin series for sin θ
θ

is

sin θ

θ
= 1− θ2

3!
+

θ4

5!
+ · · · .

By comparing the coefficient of θ2 in the above series with the terms in (18), we arrive
at

∞∑
n=1

1

n2
=

π2

3!
=

π2

6
. (19)
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5 What next?

I sincerely hope you had fun reading this article. The area of infinite products and
series is one that relates to Analysis and Number Theory. There are many more beau-
tifully results in this subject; for instance, one could find many products that multiply
to the famous mathematical constants like π and e. Then there is also the question of
how well can we approximate certain irrational numbers like π, and how fast can we
do it; that is, how fast a series converges.
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