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Odd perfect numbers
Hafsa El Ibrahimi 1

1 Introduction

Write down all the divisors of 6 except 6 itself: 1, 2, and 3. Add all these divisors. You
will come back to the number 6. Interesting, right? Take 28. Do the same thing. You
will come back to 28. This is not magic. In fact, 6 and 28 are special numbers. They
are called perfect numbers. These are the positive integers n that are equal to the sum
of their positive divisors d, excluding the number n itself. Since 6 = 1 + 2 + 3 is the
sum of its proper divisors 1, 2, and 3, the number 6 is a perfect number. Other perfect
numbers are 28, 496, and 8128.

Euclid was able to demonstrate that if p and 2p − 1 are prime numbers, then the
number 2p−1 × (2p − 1) is a perfect number. This formula generates only even perfect
numbers. For example, if p is 2, then you get 6, and if p is 3, then you find 28. But
Euclid couldn’t determine whether the set of even perfect numbers is infinite or not.

Only even perfect numbers have been discovered to this day. However, there is
no known reason why odd perfect numbers could not exist. Indeed, the Odd Perfect
Number Conjecture is one of the oldest unsolved problems in Mathematics: is it true
that no odd perfect number exist? This question has intrigued many mathematicians
around the world for centuries.

Can you find an odd perfect number or can you prove that it does not exist?

Before you think about this problem, let me introduce to you some necessary (but
not sufficient) requirements for the existence of an odd perfect number. These require-
ments can be found at [1] and many other sources, including many introductory books
on number theory. I hope that this introduction might inspire you to read more about
perfect numbers.
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2 Necessary requirements for a number to be perfect

Define σ : N → N0 to be the function σ(n) that, for each positive integer n, equals the
sum of all divisors of n, including n itself. Note that a positive integer is perfect exactly
when σ(n) = 2n.

Proposition 1. Let n ≥ 2 be a positive integer and write n = pα1
1 · · · pαk

k where p1, . . . , pk are
prime numbers and α1, . . . , αk ∈ N. Then

σ(n) = (1 + p1 + · · ·+ pα1
1 )× · · · × (1 + pk + · · ·+ pαk

k ) =
pα1+1
1 − 1

p1 − 1
× · · · × pαk+1

k − 1

pk − 1
.

Furthermore, σ is multiplicative; that is,

σ(mn) = σ(m)σ(n)

whenever m and n are co-prime positive integers.

Proof.

σ(n) =
∑
d|n

d =
∑

0≤h1≤α1

· · ·
∑

0≤hk≤αk

ph1
1 · · · phk

k =
∑

0≤h1≤α1

ph1
1

∑
0≤h2≤α2

ph2
2 · · ·

∑
0≤hk≤αk

phk
k .

Each of the sums above is an geometric sum and therefore is equal to

∑
0≤hi≤αi

phi
i = 1 + pi + p2i + · · ·+ pαi

i =
pαi+1
i − 1

pi − 1
,

so

σ(n) =
pα1+1
1 − 1

p1 − 1
× · · · × pαk+1

k − 1

pk − 1
,

as claimed. Now, suppose that m is a positive integer that is coprime with n, and
factorise m into primes qi: m = qβ1

1 · · · qβℓ

ℓ . Then

σ(mn) = σ(pα1
1 · · · pαk

k qβ1

1 · · · qβℓ

ℓ )

=
pα1+1
1 − 1

p1 − 1
× · · · × pαk+1

k − 1

pk − 1
× qβ1+1

1 − 1

q1 − 1
× · · · × qβℓ+1

ℓ − 1

qℓ − 1

= σ(m)σ(n) .
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Theorem 2. If n is an odd perfect number, then

n = prs2

for some prime number p and positive integers r and s such that p ≡ r ≡ 1 (mod 4).

Proof. Assume that n is an odd perfect number and factorise n as n = pα1
1 · · · pαk

k . Then
σ(n) = 2n. On the other hand, according to Proposition 1,

σ(n) = σ(pα1
1 ) · · ·σ(pαk

k ) = 2n .

Therefore, σ(pα1
1 ) · · ·σ(pαk

k ) is even but is not divisible by 4.
This is possible if and only if one of σ(pαi

i ) is divisible by 2 and the others are odd.
Without loss of generality, suppose that

σ(pα1
1 ) ≡ 2 (mod 4)

and that σ(pα2
2 ), . . . , σ(pαk

k ) are odd.
Since p1 is odd, then either p1 ≡ 1 (mod 4) or p1 ≡ −1 (mod 4). Suppose that

p1 ≡ −1 (mod 4). Then

σ(pα1
1 ) = 1 + p1 + p21 + · · ·+ pα1

k ≡ 1− 1 + 1− · · ·+ (−1)α1 (mod 4) .

If α1 is odd, then σ(pα1
1 ) ≡ 0 (mod 4); otherwise, σ(pα1

1 ) ≡ 1 (mod 4). This is a contra-
diction since σ(pα1

1 ) ≡ 2 (mod 4).
Therefore, p1 ≡ 1 (mod 4). Also,

σ(pα1
1 ) = 1 + p1 + p21 + · · ·+ pα1

k ≡ 1 + 1 + 1 + · · ·+ 1 ≡ α1 + 1 (mod 4) .

Since σ(pα1
1 ) = 2, it follows that α1 ≡ σ(pα1

1 )− 1 ≡ 2− 1 ≡ 1 (mod 4).
On the other hand, for i = 2, . . . , k, the prime pi is odd, so

σ(pαi
i ) = 1 + pi + p2i + · · ·+ pαi

i ≡ 1 + 1 + · · ·+ 1 ≡ αi + 1 (mod 2) .

However, σ(pαi
i ) ≡ 1 (mod 2), so αi ≡ 0 (mod 2); that is, αi is even.

We have proved that p1 ≡ α1 ≡ 1 (mod 4) and that αi is even for all i = 2, . . . , k.
Therefore, we can write

n = prs2

where prime p = p1 and positive integer r = α1 satisfy p ≡ r ≡ 1 (mod 4) and where
s = p

α2/2
2 · · · pαk/2

k . 2
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Corollary 3. No odd perfect number is divisible by 105.

Proof. Assume that n is an odd perfect number that is divisible by 105 = 3 × 5 × 7.
We can therefore write n as

M = 3a × 5b × 7c × pα4
4 × · · · × pαk

k

for primes p4, . . . , pk and positive integers a, b, c, α4, . . . , αk.
Since 3 ≡ 7 ≡ 3 (mod 4), Theorem 2 implies that a and c are even; therefore, a, c ≥ 2.

Also, n is perfect, so σ(n) = 2n. By Theorem 1,

2 =
σ(n)

n

=
(1 + 3 + · · ·+ 3a)(1 + 5 + · · ·+ 5b)(1 + 7 + · · ·+ 7c) · · · (1 + pk + · · ·+ pαk

k )

3a × 5b × 7c × · · · × pαk
k

= (1 + 3−1 + · · ·+ 3−a)(1 + 5−1 + · · ·+ 5−b)(1 + 7−1 + · · ·+ 7−c) · · · (1 + p−1
k + · · ·+ p−αk

k )

≥ (1 + 3−1 + 3−3)(1 + 5−1)(1 + 7−1 + 7−2)

=
494

245
> 2 ,

a contradiction. Therefore, n is not divisible by 105. 2

Theorem 4. An odd perfect number is divisible by at least three different primes.

To prove this theorem, we will need the following lemma.

Lemma 5. Let n be an odd perfect number and let p1, . . . , pk be its prime divisors. Then
p1

p1 − 1
× · · · × pk

pk − 1
> 2 .

Proof. Write n = pα1
1 · · · pαk

k and note that σ(n) = 2n. By Theorem 1,

2 =
σ(n)

n
=

p
α1+1
1 −1

p1−1
× · · · × p

αk+1

k −1

pk−1

pα1
1 · · · pαk

k

<

p
α1+1
1

p1−1
× · · · × p

αk+1

k

pk−1

pα1
1 · · · pαk

k

=
p1

p1 − 1
× · · · × pk

pk − 1
.

2

Now, let’s prove Theorem 4.

Proof. Let n be an odd perfect number and assume that n is divisible only by a single
prime number; that is, n = pα for some prime p ≥ 3 and an integer α. Then 3p ≥ 2p+3,
so 3(p− 1) ≥ 2p. By Lemma 5,

3

2
≥ p

p− 1
> 2 ,

a contradiction. Assume then than n is divisible by exactly distinct primes; that is,
n = pαqβ for primes p ≥ 3 and q ≥ 5 and positive integers α and β. Then p

p−1
≤ 3

2
and,

similarly, q
q−1

≤ 5
4
. But then Lemma 5 implies that

2 <≤ 15

8
=

3

2
× 5

4
≥ p

p− 1
× q

q − 1
> 2 ,

a contradiction. It follows that n is divisible by at least 3 distinct prime numbers. 2
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