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A generalised recurrence relation for irrational powers
Eeshan Zele1

1 Introduction

In previous issues of Parabola, Randell Heyman [1] showed that

cn = (1 +
√
2)n + (1−

√
2)n

is an integer for each natural number n and Xiaoyan Hu [2] derived a recursion relation
for this sequence. This article extends upon these results, by providing another method
to arrive at the recursive relation. Indeed, we find the recursive relation for the more
general sequence

sn = (a+
√
b)n + (a−

√
b)n for a, b ∈ N .

2 Recursive relations

To find the recursive relation for

sn = (a+
√
b)n + (a−

√
b)n for a, b ∈ N .

we can first find the monic quadratic polynomial with roots α± = a±
√
b:

(x− α−)(a− α+) =
(
x− (a−

√
b)
)(
(x− (a+

√
b)
)

= x2 −
(
(a−

√
b) + (a+

√
b)
)
x+ (a−

√
b)(a+

√
b)

= x2 − 2ax+ (a2 − b) .

The corresponding quadratic equation with solutions a ±
√
b is x2 = 2ax + (b − a2).

Multiplying by xn−2 on both sides of the equation gives

xn = 2axn−1 + (b− a2)xn−2 .

Since a+
√
b and a−

√
b are solutions to this equation,

(a+
√
b)n = 2a(a+

√
b)n−1 + (b− a2)(a+

√
b)n−2

(a−
√
b)n = 2a(a−

√
b)n−1 + (b− a2)(a−

√
b)n−2
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By adding these two equations, we get:

(a+
√
b)n+(a−

√
b)n = 2a

(
(a+

√
b)n−1+(a−

√
b)n−1

)
+(b−a2)

(
(a+

√
b)n−2+(a−

√
b)n−2

)
.

We recognise the terms sk = (a+
√
b)k+(a−

√
b)k for k = n−2, n−1, n and can re-write

the equation as follows:
sn = 2a sn−1 + (b− a2)sn−2 .

Note also that
s1 = (a+

√
b) + (a−

√
b) = 2a

s2 = (a+
√
b)2 + (a−

√
b)2 = 2a2 + 2b .

Hence, we get that the sequence sn is defined by the recursive relation

sn = 2a sn−1 + (b− a2)sn−2

with initial conditions s1 = 2a and s2 = 2(a2 + b).
Returning to the original sequence cn = (1 +

√
2)n + (1 −

√
2)n, we see that a = 1

and b = 2 and that the sequence cn is therefore determined by the recursive relation

cn = 2 cn−1 + cn−2

with initial conditions s1 = 2 and s2 = 6.

3 Pell’s Equation

Pell’s Equation is the Diophantine (integer) equation of the form

x2 − dy2 = 1

where d is any natural, non-square number. Solutions (x, y) to Pell’s Equations must
be integers satisfying the equation above.

To solve Pell’s Equation, we can first find an initial, or fundamental, solution by
trial and error. First, we rearrange the equation to be x2 = 1 + dy2. By trial and error,
we can try different values of y to find a value of 1+ dy2 that is a square. For any value
y for which 1 + dy2 is a square, we get x =

√
1 + dy2. This gives the solution (x, y).

Suppose that (a, b) is a fundamental solution to Pell’s Equation, and let α = a+b
√
d.

Let Z[
√
d] be the set of numbers of the form x + y

√
d where x, y ∈ Z. These include

α = a+b
√
d. For any number u = x+y

√
d ∈ Z[

√
d], define N(u) = x2−y2d and note that

N(α) = a2 − b2d. Since (a, b) satisfies Pell’s equation, we see that N(α) = a2 − b2d = 1.
For any two numbers u = x+ y

√
d and v = p+ q

√
d in Z[

√
d],

uv = (px+ qyd) +
√
d(py + qx) .

We see that uv is also a number in Z[
√
d]. Furthermore,

N(uv) = (px+ qyd)2 − (py + qx)2d = (p2 − q2d)(x2 − y2d) = N(u)N(v) .
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We can use this property to see that N(u2) = N(u)2. Generalizing this, we see that
N(un) = N(u)n for all positive integers n.

Applying these observation to α, we see that αn is a number in Z[
√
d] and can

therefore by written as αn = an + bn
√
d for some integers an and bn. Furthermore,

N(αn) = N(α)n = 1 since N(α) = 1, so the coefficient of an and bn satisfy the equation
a2n − b2nd = 1. In other words, the coefficients αn are also solutions to Pell’s Equation.

From this, we can conclude that if (a, b) satisfies Pell’s Equation and α = a + b
√
d,

then the coefficients an and bn of αn = an + bn
√
d also form a solution (an, bn) to Pell’s

Equation.

Recursive Solutions to Pell’s Equation

Since αn yields coefficients which are solutions to Pell’s equation, and α = a + b
√
d

(where (a, b) are fundamental solutions), we can find a recursive relation for the solu-
tions as described above.

First, let us form a quadratic in the form x2 + px+ q with solutions a± b
√
d.

Sum of roots: (a+ b
√
d) + (a− b

√
d) = 2a = −p

Product of roots: (a+ b
√
d)(a− b

√
d) = a2 − b2d = q

With the sum and product of roots, we get the quadratic equation α2−2aα+a2−b2d = 0,
which has solutions a± b

√
d.

Rewriting the equation and multiplying both sides by αn−2, we get

αn = 2aαn−1 + (b2d− a2)αn−2

This gives us the recursion for αn. We can use this to get the recursion for the nth
solution (xn, yn) to Pell’s equation through simply substituting x or y in the place of α
in this recursion. Doing this, we get

xn = 2axn−1 + (b2d− a2)xn−2 ,

with the initial conditions of x1 = a, x2 = a2+ b2d and yn = 2ayn−1+(b2d−a2)yn−2 with
initial conditions y1 = b, y1 = 2ab.
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General Formula for nth Solution

The general formula of xn and yn through looking at the expansions for smaller values.
Let’s first focus on the general formula for xn:

We can use the recursive formula to look at the first 7 values of xn:

x1 = a

x2 = a2 + b2d

x3 = a3 + 3ab2d

x4 = a4 + 6a2b2d+ b4d2

x5 = a5 + 10a3b2d+ 5ab4d2

x6 = a6 + 15a4b2d+ 15a2b4d2 + b6d3

x7 = a7 + 21a5b2d+ 35a3b4d2 + 7ab6d3 .

While it may be difficult to identify any pattern here, we can write out the coefficients
of each term in terms of their binomial coefficients.

x1 =

(
1

0

)
a1(b2d)0

x2 =

(
2

0

)
a2(b2d)0 +

(
2

2

)
a0(b2d)1

x3 =

(
3

0

)
a3(b2d)0 +

(
3

2

)
a1(b2d)1

x4 =

(
4

0

)
a4(b2d)0 +

(
4

2

)
a2(b2d)1 +

(
4

4

)
a0(b2d)2

x5 =

(
5

0

)
a5(b2d)0 +

(
5

2

)
a3(b2d)1 +

(
5

4

)
a1(b2d)2

x6 =

(
6

0

)
a6(b2d)0 +

(
6

2

)
a4(b2d)1 +

(
6

4

)
a2(b2d)2 +

(
6

6

)
a0(b2d)3

x7 =

(
7

0

)
a7(b2d)0 +

(
7

2

)
a5(b2d)1 +

(
7

4

)
a3(b2d)2 +

(
7

6

)
a1(b2d)3 .

From this, a pattern becomes quite clear:

xn =

(
n

0

)
an(b2d)0 +

(
n

2

)
an−2(b2d)2 +

(
n

4

)
an−4(b2d)3 +

(
n

6

)
an−6(b2d)4 + · · · .

We can write this more concisely as:

xn =
n∑

k=0

(
n

2k

)
an−2k(b2d)k .

A similar methodology can be followed to find yn. First, we can look at the first few
values of yn:
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y1 =

(
1

1

)
a0(b2d)0b

y2 =

(
2

1

)
a1(b2d)0b

y3 =

(
3

1

)
a2(b2d)0b+

(
3

3

)
a0(b2d)1b

y4 =

(
4

1

)
a3(b2d)0b+

(
4

3

)
a1(b2d)1b

y5 =

(
5

1

)
a4(b2d)0b+

(
5

3

)
a2(b2d)1b+

(
5

5

)
a0(b2d)2b

y6 =

(
6

1

)
a5(b2d)0b+

(
6

3

)
a3(b2d)1b+

(
6

5

)
a1(b2d)2b

y7 =

(
7

1

)
a6(b2d)0b+

(
7

3

)
a4(b2d)1b+

(
7

5

)
a2(b2d)2b+

(
7

7

)
a0(b2d)3b .

From this, a pattern becomes quite clear.

yn = b

((
n

1

)
an−1(b2d)0 +

(
n

3

)
an−3(b2d)1 +

(
n

5

)
an−5(b2d)3 +

(
n

7

)
an−7(b2d)4 + · · ·

)
.

We can write this more concisely as

yn = b
n∑

k=0

(
n

2k + 1

)
an−(2k+1)(b2d)k .

To summarize, for Pell’s equation in the form x2 − dy2 = 1 with the fundamental
solutions (a, b), with the nth solution (xn, yn), xn can be found as

xn =
n∑

k=0

(
n

2k

)
an−2k(b2d)k

and yn can be found as

yn = b

n∑
k=0

(
n

2k + 1

)
an−(2k+1)(b2d)k .
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