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Using mathematics to study the spread of COVID-19
John Pollard1

There has been a lot of discussion about eliminating or extinguishing the COVID-
19 virus, and basic mathematics can be very helpful in understanding whether this is
possible. Let us imagine that there is a single case of the virus and that this case has
probability p0 of infecting nobody, p1 of infecting 1 person, probability p2 of infecting
exactly 2 persons, and so on. We note that the sum of all these probabilities equals 1,

∞∑
j=0

pj = 1 ,

and then ask the question:

What is the probability of complete elimination of the virus?

For complete elimination of the virus, either the initially infected person must infect
no-one else (with probability p0) or, if that person infects exactly one person (with
probability p1), then the case sequence from that single case must eventually die out
or, if that person produces infects exactly 2 people (with probability p2), then the se-
quences of cases produced by both of those people must eventually die out, and so on.
Let us assume that the probability of complete elimination is x. Then the reasoning of
the previous paragraph implies that

x = p0 + p1x+ p2x
2 + p3x

3 + · · · . (1)

The right-hand side of equation (1) is known as the probability-generating function of the
probability distribution of x.

Remark 1. Note that

if p0 = 1, then the virus is eliminated immediately since only the first person becomes
infected;

if p0 = 0, then complete elimination is not possible since each infected person has zero
probability of not infecting further people;

if p1 = 1, then complete elimination is not possible since each infected person must infect
one other person;

if p0 and p1 are the only non-zero probabilities, then complete elimination is certain since
each case of infection will on average lead to less than one new case; and

if there are n ≥ 2 initial infection cases whose infection sequences subsequently behave
completely independently of each other, then the probability of complete elimination is xn.

1John Pollard is Emeritus Professor and former Professor of Actuarial Studies at Macquarie Univer-
sity.

1



Poisson distribution for infections

The Poisson distributions is one of the fundamental probability distributions in statistics
and finds application in a wide range of areas ranging from blood counts and epi-
demiology to motor accidents and insurance, and many other areas. According to this
discrete distribution, the probability of exactly j ≥ 0 events happening is as follows:

Pj = e−λλ
j

j!
(2)

where λ is the mean of the distribution. To get a feel for the Poisson distribution let
us look at the numerical values of the probabilities for different values of the mean λ,
given by the graphs of Pj below.
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From these graphs, we might intuitively expect the probability of complete elimi-
nation to be low when the mean number λ of infections produced by a single case is
high, and conversely when the mean number λ is low.

Calculating the probability of complete elimination

If the probabilities of the number of infections caused by a single infectious person fol-
lows the Poisson distribution, a not an unreasonable assumption, then the probability
of the virus being completely eliminated according to equation (1) must be the solution
to the equation

x =
e−λλ0

0!
x0 +

e−λλ1

1!
x1 +

e−λλ2

2!
x2 + · · · . (3)

The powers of x and λ in each term are the same as each other, so from our knowledge
of the exponential series, the sum of the infinite series is e−λeλx or, in other words,
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e−λ(1−x). To determine the probability of complete elimination, we therefore need to
solve the equation

x = e−λ(1−x) . (4)

This is a non-linear equation, and there are several ways in which it can be solved. The
simplest is to use mathematical software such as the Solver add-on for Excel; other
methods are mentioned in Appendix 1 below. Results for various Poisson mean val-
ues λ are as follows, where P (CE|1) and P (CE|10) denote the probability the virus is
eventually completely eliminated, given 1 initial case and 10 initial cases, respectively.

λ P0 P1 P2 P (CE|1) P (CE|10)
1 0.368 0.368 0.264 0.9950 0.9511
2 0.135 0.271 0.594 0.2032 0.1200× 10−6

3 0.050 0.149 0.801 0.5952× 10−1 0.5580× 10−12

4 0.018 0.073 0.908 0.1983× 10−1

5 0.007 0.034 0.960 0.6977× 10−2

7 0.001 0.006 0.993 0.3364× 10−3

10 < 0.001 < 0.001 > 0.999 < 0.0001× 10−4

As we argued above intuitively, the probability of complete elimination is higher
when the average number of infections per single infectious person is small and con-
versely when the average number is high. What we were not able to guess intuitively
was the speed with which the probability of complete elimination would fall as the
mean number of infections per initial single case increased beyond 1 or 2. The drop in
complete elimination probability with 10 initial cases (the 10th power of the previous
column) is frightening. One can see why our health authorities are concerned to keep
locally acquired COVID-19 cases as close to zero as possible!

Other models

The model we have described is only one possible model for studying the epidemi-
ology of COVID-19. It addresses only one important aspect - extinction. A multi-
dimensional version exists which would allow study of mutations. Other models are
needed to answer different questions and usually require computer simulation.
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Appendix 1. Other methods to solve non-linear equations

The Newton-Raphson method uses the first two terms of the Taylor series expansion of a
function, or more simply, by using the value of the function and its slope:

f(a+ h) ∼ f(a) + hf ′(a) .

If the equation we want to solve is f(x) = 0, then we choose a suitable starting value a
and calculate

h = − f(a)

f ′(a)

which gives us the next approximate solution a + h. We then repeat the process with
this new starting value and continue iteratively until until convergence to the solution
required. Using this approach with

f(x) = e−λ(1−x) − x

and mean λ = 2, and starting with the trial value x = 0.15, the following sequence of
values emerges:

trial value improved value
0.15 0.2015
0.2015 0.2032
0.2032 0.2032

Convergence was fast to a value which accords with the probability calculated ear-
lier by Excel Solver.

Another approach which sometimes works and might be tried is to use the actual
non-linear equation (or a rearranged version of it) and apply it iteratively. This will not
always work or may converge slowly. Substituting a starting trial value of 0.15 in the
right-hand side of (4) for the case λ = 2, the following slow sequence to convergence
emerges:

trial value improved value
0.15 0.1827
0.1827 0.1950
0.1950 0.1999
0.1999 0.2019
0.2019 0.2027
0.2027 0.2030
0.2030 0.2031
0.2031 0.2032
0.2032 0.2032
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Appendix 2. Historical notes

The process that we have studied above is known as a branching process or a Galton-
Watson. Francis Galton was a 19th century Victorian polymath who is now infamous
for inventing and promoting eugenics. He became interested in the extinction of aris-
tocratic family names and, in 1873, posed the following problem [1]:

Problem 4001: A large nation, of whom we will only concern ourselves with adult
males, N in number, and who each bear separate surnames colonise a district. Their
law of population is such that, in each generation, a0 per cent of the adult males have
no male children who reach adult life; a1 have one such male child; a2 have two; and
so on up to a5 who have five. Find

(1) what proportion of their surnames will have become extinct after r generations;

(2) how many instances there will be of the surname being held by m persons.

As you might notice, the problem bears strong resemblance to the problem of this
present article and involves a branching of special cases. Henry William Watson, a
priest and prolific mathematician, published a solution [2], and in 1875 he and Galton
together published a mathematics research paper [3] on the general problem and its
method of solution. It was later discovered that Watson’s solution contained an error.
In 1977, two Australian mathematicians Heyde and Seneta [5] uncovered that the cor-
rect extinction result was known to the French statistician Irénée-Jules Bienaymé in as
early as 1845.
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