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Solutions 1641–1650
Q1641 Let a, b, c, d be positive real numbers such that a+ b+ c+ d = 4; prove that

(16

a2
− 1

)(16

b2
− 1

)(16

c2
− 1

)(16

d2
− 1

)

≥ 154 .

SOLUTION We use the AGM (arithmetic–geometric–mean) inequality, which states
that the average of any n positive real numbers is greater than or equal to the nth root
of their product. Taking firstly the five numbers a, b, c, d, a and then the three numbers
b, c, d, this gives

a + b+ c+ d+ a

5
≥ 5

√
abcda and

b+ c+ d

3
≥ 3

√
bcd .

Since a+ b+ c+ d = 4, these inequalities can be written

4 + a ≥ 5
5
√
a2bcd and 4− a ≥ 3

3
√
bcd

and then multiplied to give

16− a2 ≥ 15
5
√
a2bcd

3
√
bcd .

By similar arguments, we obtain inequalities for 16− b2 and 16− c2 and 16− d2; multi-
plying them and collecting surds on the right hand side gives

(16− a2)(16− b2)(16− c2)(16− d2)

≥ 154
5
√
a2bcd ab2cd abc2d abcd2

3
√
bcd acd abd abc ,

which simplifies to

(16− a2)(16− b2)(16− c2)(16− d2) ≥ 154a2b2c2d2 .

And now dividing both sides by the positive number a2b2c2d2 solves the problem.

Q1642 A regular n–gon is rotated by some angle about its centre O and the result is
superimposed upon the original; the diagram illustrates the situation for n = 5. Let A0

be the area of the original polygon and P0 its perimeter. Let A be the area common to
both polygons (light red in the figure) and P the perimeter of the combined polygons
(the whole coloured region in the figure). Prove that

P

P0

+
A

A0

= 2 .
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SOLUTION By symmetry, all the dark red triangles in the diagram are congruent. (If
desired, more details are given at the end of this solution.) Therefore we can label
lengths as shown in the diagram.

O R

R α

β

L1

L1

L2

L2

L3

Let S0 be the length of one side of the original polygon; let R be the distance from
the centre to one vertex (that is, the circumradius of the polygon); let α be the internal
angle at a vertex; and let β be the angle subtended at the centre by a side. Then by
standard geometrical arguments we have

α = π − β , P0 = nS0 , S0 = 2R sin(β/2) , A0 =
1

2
nR2 sin β .

The boundary of the combined figure consists of the sides L1, L2 taken 2n times, and
the area of overlap is the area of the original, less n of the dark red triangles. If we
write T for the area of one of these triangles, then

P = 2n(L1 + L2) , A = A0 − nT .

Since the triangle has sides L1, L2 with included angle α, we have

T = 1

2
L1L2 sinα = 1

2
L2L2 sin β .

Applying the cosine rule to this triangle and noting that L3 = S0 − L1 − L2 yields

(S0 − L1 − L2)
2 = L2

1
+ L2

2
− 2L1L2 cosα .

If we expand and rearrange this, using the identity

1 + cosα = 1− cos β = 2 sin2(β/2) ,

we obtain (check it for yourself!)

2S0(L1 + L2) = S2

0
+ 4L1L2 sin

2(β/2) .
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Hence
P

P0

=
2n(L1 + L2)

nS0

=
S2

0
+ 4L1L2 sin

2(β/2)

S2

0

= 1 +
4L1L2 sin

2(β/2)

4R2 sin2(β/2)

n sin β

n sin β

= 1 +
8nT

8A0

and finally
P

P0

+
A

A0

= 1 +
nT

A0

+
A0 − nT

A0

= 2

as claimed.

To confirm that all the dark red triangles are congruent, consider the following dia-
gram, in which θ denotes the angle by which the original polygon is rotated.

O

θθ

A

A′ B

B′

C D
E F

X

We have

• OA = OB′ = R and ∠AOC = ∠B′OD and ∠OAC = ∠OB′D = 1

2
α, so △OAC ≡

△OB′D;

• therefore OC = OD; and OA′ = OB = R, so by subtraction A′C = BD;

• also ∠ACO = ∠B′DO, therefore ∠A′CX = ∠BDX ;

• and ∠CA′X = ∠DBX = 1

2
α, so △CA′X ≡ △DBX ;

• so A′X = BX and ∠A′XE = ∠BXF and ∠XA′E = ∠XBF = α;

and so △A′XE ≡ △BXF , which is what we wanted to prove.

Q1643 A positive integer with k digits d0d1 · · · dk−1 in base 10 is called a Geezer num-
ber if the digits consist of exactly d0 zeros, exactly d1 ones, exactly d2 twos and so on.
The number of digits is at most 10. For example, 2020 is a Geezer number since the
digits 0, 1, 2, 3 occur 2, 0, 2, 0 times. We do not allow the first digit of a positive integer
to be zero. Prove that in a k–digit Geezer number

(a) the sum of the digits is k;
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(b) the digits d3, d4, . . . , dk−1 cannot be greater than 1.

SOLUTION To prove (a) we simply note that the sum of the digits d0 + d1 + · · · is the
number of 0s in the Geezer number, plus the number of 1s, and so on, which is the
total number of digits, which is k. For (b), let n be a k–digit Geezer number, let i ≥ 3
and suppose that the digit i occurs j times, where j ≥ 2. Then there are j digits which
occur at least 3 times each. If j = 2 then these digits are not i (because i occurs twice,
not three times or more); if j ≥ 3 then one of the j digits may be i, but at least two are
not. So n contains, as a minimum, the digits

a, a, a, b, b, b, i, i,

where a, b, i are all different. There may be up to two further digits. The sum of these
digits is

S = 3(a+ b) + 2i .

We have
S ≥ 3(0 + 1) + 2(3) = 9 ,

and we know that S ≤ 10, so there cannot be another digit i; so i occurs exactly twice,
and one of the digits in n must be a 2. If either a or b is 2 then

S ≥ 3(0 + 2) + 2(3) = 12

which is impossible; if not, then 2 is an extra digit and we have

S ≥ 3(0 + 1) + 2 + 2(3) = 11

which is still impossible. We have ruled out all options; therefore it is impossible for a
digit i ≥ 3 to occur two or more times in a Geezer number.

Q1644 Of the students in a senior maths class, the proportion who read Parabola is
66%, to the nearest percent . What is the smallest possible number of students in the
class?

SOLUTION Suppose that there are y students in the class, and x of them read Parabola .
Then

65
1

2
% <

x

y
< 66

1

2
% ,

which can be written

−1

2
% <

x

y
− 66

100
<

1

2
% ,

or
∣

∣

∣

∣

x

y
− 33

50

∣

∣

∣

∣

<
1

200
. (1)

We want to find positive integers x, y satisfying this inequality, with the smallest pos-
sible value of y; since x = 33, y = 50 is an obvious solution, we can limit ourselves to
solutions with y ≤ 50. The inequality can be rewritten

|50x− 33y| < y

4
,
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and we note that the left hand side is an integer.

For information about solving 50x−33y = c, where c is a given integer and x, y are re-
quired to be integers, see www.parabola.unsw.edu.au/ 2010-2019/volume-49-2013/issue-2/ar

-equations. By an easy trial and (no) error, the equation 50x−33y = 1 has a solution
x = 2, y = 3; so the general solution of

50x− 33y = c

is
x = 2c+ 33t , y = 3c+ 50t ,

where t is an integer. Since we are looking for y ≤ 50, we shall choose the value of t to
guarantee this.

First note that |c| < y/4 ≤ 121

2
, so c = 0,±1,±2, . . . ,±12, and that c = 0 gives the

solution x = 33, y = 50 which we know already. If c > 0 then 3 ≤ 3c ≤ 36; this is in the
range 1 to 50 already, so we take t = 0 and y = 3c. But then we have c < 3c/4, which
is impossible; so this case is ruled out. Therefore we have c < 0; write c = −d. Then
−36 ≤ 3c ≤ −3, so to obtain y in the range 1 to 50 we need t = 1 and

y = −3d+ 50 . (2)

Hence

d = |c| < −3d+ 50

4
,

which simplifies to d ≤ 7. To obtain the smallest possible y in (2) we need the largest
possible d; so

d = 7 , x = 19 , y = 29 ,

and the smallest possible number of students in the class is 29.

Check: 19

29
= 0.6551 · · · , which is between 651

2
% and 661

2
%.

Q1645 A row of boxes contains m zeros, followed by the numbers 1, 2, . . . , n once
each. There is a row of empty boxes below it. We give an example with m = 3 and
n = 5.

0 0 0 1 2 3 4 5

We want to write the same numbers in the second row in such a way that no column
contains the same number twice. Determine the number of ways of doing this (a) if
n = m; (b) if n = m+ 1; (c) if n = m+ 2.

SOLUTION

(a) If n = m then the m zeros in the second row must occupy the rightmost m spaces,
and the other numbers can be arranged in any way in the leftmost m spaces. There
are m! ways of doing this.
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(b) If n = m + 1 then all but one of the rightmost m + 1 places must be occupied by
zeros. There are m+1 ways to choose this place; it can then be filled by any of the
numbers 1, 2, . . . , m + 1 except that in the same column, so there are m options.
The numbers not yet used are not zero, so they can go below the zeros in any way:
m! options. The total number of ways to fill in the numbers is

(m+ 1)mm! = m(m+ 1)! .

(c) If n = m + 2 then the zeros in the second row must occupy all but two of the
rightmost m+2 spaces; the number of ways to choose these spaces is C(m+2, 2) =
1

2
(m + 2)(m + 1). Suppose the unused spaces are in columns a and b. If a in the

second row is written in column b, then the remaining columns contains 0s and a;
these numbers do not occur among the m + 1 numbers yet to be placed, so there
are (m + 1)! possible placements. If a is not written in column b then it must be
placed in one of the 0 columns (m options); then b must be placed in another of
the 0 columns or in the a column (m options); and the remaining m numbers do
not include 0 or a or b, so they can be placed in any way (m! options). So the total
number of arrangements is

C(m+ 2, 2)[(m+ 1)! +mmm!]

=
1

2
(m+ 2)(m+ 1)(m2 +m+ 1)m!

=
1

2
(m2 +m+ 1)(m+ 2)! .

Q1646 Triangle ABC has a right angle at B, and D is a point on the hypotenuse AC.
The perpendicular to AC at D intersects AB at E, and we draw the line EC.

Use this diagram to prove the “cosine of a sum” formula

cos(x+ y) = cos x cos y − sin x sin y .

SOLUTION Let ∠DAE = x and ∠DCE = y. Then ∠CEB = x+ y (exterior angle of a
triangle equals the sum of the two opposite interior angles).

A
B

C

D

E
x

y

x+ y

Moreover, Pythagoras’ Theorem in △ADE gives AD2 +DE2 = AE2; also △ADE and
△ABC are similar (two equal angles), so AD/AE = AB/AC, so AD · AC = AB · AE.
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Using these facts we have

cosx cos y − sin x sin y =
AD

AE

CD

CE
− DE

AE

DE

CE

=
AD(AC − AD)−DE2

AE · CE

=
AD · AC − AE2

AE · CE

=
AB · AE −AE2

AE · CE

=
AB − AE

CE
=

BE

CE
= cos(x+ y)

as claimed.

Q1647 A monk visits t temples and burns a number of incense sticks, the same num-
ber at each temple. The temples are located on different islands in a magic lake and
he visits them by boat. The lake doubles the number of sticks he holds each time he
reaches an island. At the end of the day he has burnt all his incense sticks. How many,
at least, did he start with?

SOLUTION Suppose that the monk starts with n sticks and burns s at each temple.
Let f(k) be the number of sticks he holds after leaving the kth temple. Then we have

f(t) = 2f(t− 1)− s , f(t− 1) = 2f(t− 2)− s

and so on. We write out these equations and multiply the second by 2, the third by 4,
the fourth by 8 and so on. This gives

f(t) = 2f(t− 1)− s

2f(t− 1) = 4f(t− 2)− 2s

4f(t− 2) = 8f(t− 3)− 4s

...

2t−2f(2) = 2t−1f(1)− 2t−2s

2t−1f(1) = 2tf(0)− 2t−1s ,

where f(0) is the number he had before visiting the first temple. Adding up all these
equations, nearly all the f terms cancel and we obtain

f(t) = 2tf(0)− s(1 + 2 + 4 + · · ·+ 2t−2 + 2t−1) .

The term in brackets is a geometric progression; adding the progression and remem-
bering that f(0) = n gives

f(t) = 2tn− (2t − 1)s .

But since the monk ended up with no sticks we have f(t) = 0 and hence 2tn = (2t−1)s.
As 2t − 1 and 2t have no common factor, n must be a multiple of 2t − 1. Therefore the
smallest possible number of incense sticks the monk began with is 2t − 1.
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Q1648 A rectangular box ABCDEFGH has side lengths AB = 19, AD = 20, AE =
21, and has a small aperture at each of the vertices. A particle P is projected from A
to the interior of the box along the line x = y = z. For instance, if the origin is at
A = (0, 0, 0) and the x, y, z axes are along AB, AD, AE respectively, the particle P will
first rebound from the wall BCGF at the coordinate (19, 19, 19). Which vertex will P
emerge from eventually?

A B

CD

E F

GH

SOLUTION When the particle hits a vertex, it must have travelled all the way across
the box in the AB direction a number of times. Therefore the distance x travelled in
this direction must be a multiple of 19. For similar reasons, the distance y travelled
in the AD direction must be a multiple of 20 and the distance z in the AE direction is
a multiple of 21. But x = y = z, so each of these distances must be a multiple of 19
and of 20 and of 21, and therefore a multiple of their product 19× 20× 21. This means
that when the particle falls into a vertex, it has travelled back and forth in the AB
direction 20 × 21 times; this is an even number, so the particle has hit the face ADHE.
Similarly, it has traversed the box in the AD direction 19 × 21 times, an odd number,
and has ended up hitting the face DCGH ; and in the AE direction 19×20 times, hitting
ABCD. Therefore the vertex that the particle falls into must be one which is common
to all three of these faces, and the only such vertex is D.

Q1649

(a) Given positive real numbers p, q, find all real numbers x, y with x > y ≥ 0 such
that √

x−√
y = p and x−√

xy + y = q .

(b) Given positive real numbers s, t, consider the simultaneous equations

x2 + y2 = s and 2x
√
xy − 3xy + 2y

√
xy = t .

Show that the equations have no solution if s < 2t; and find all solutions x > y ≥ 0
if s ≥ 2t.

SOLUTION In part (a), we can write the second equation as

x− (
√
x−√

y)
√
y = q ;
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using the first equation, this becomes

x− q = p(
√
x− p) ⇒ x− (q − p2) = p

√
x

⇒ (x− (q − p2))2 = p2x .

A similar process gives

y − (q − p2) = −p
√
y and so (y − (q − p2))2 = p2y .

Thus x and y are both solutions of the quadratic equation

(z − (q − p2))2 = p2z ,

which simplifies to
z2 − (2q − p2)z + (q − p2)2 = 0 .

This quadratic has discriminant (2q − p2)2 − 4(q − p2)2 = p2(4q − 3p2), and so there are
two real solutions if and only if 4q > 3p2; in this case we also have 2q − p2 > 0, which
means that the solutions are both positive. Since x is the larger of the two solutions we
have

x =
2q − p2 + p

√

4q − 3p2

2
and y =

2q − p2 − p
√

4q − 3p2

2
.

Given the equations in part (b), we expand by the binomial theorem to get

(
√
x−√

y)4 = x2 − 4x
√
xy + 6xy − 4y

√
xy + y2

= s− 2t
(1)

and
(x−√

xy + y)2 = x2 + xy + y2 − 2x
√
xy + 2xy − 2y

√
xy

= s− t .

If s < 2t then (1) is impossible and there is no solution. If s > 2t then we have

√
x−√

y = p and x−√
xy + y = q ,

where
p = 4

√
s− 2t , q =

√
s− t

(taking positive roots since x > y ≥ 0), and we may use the result of (a). We have

4q − 3p2 = 4
√
s− t− 3

√
s− 2t > 3

√
s− t− 3

√
s− 2t > 0 ,

and so the solutions are

x =
2
√
s− t−

√
s− 2t+ 4

√
s− 2t

√

4
√
s− t− 3

√
s− 2t

2

and

y =
2
√
s− t−

√
s− 2t− 4

√
s− 2t

√

4
√
s− t− 3

√
s− 2t

2
.
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Q1650 A trapezium ABDC has AB parallel to CD. The diagonals AD and BC divide
the trapezium into four triangles with areas A1, A2, A3, A4 as shown in the diagram.

A B

C D

EA1

A2

A3

A4

α

α
β

(a) Prove that A1A3 = A2A4.

(b) Deduce that the area of the trapezium is at least 4A1. What more can you say
about the trapezium if its area is 4A1?

SOLUTION With angles labelled as in the diagram, we have

A1A3 =
[1

2
(EA)(EC) sin β

][1

2
(EB)(ED) sin β

]

=
[1

2
(EC)(ED) sinα

][1

2
(EA)(EB) sinα

]

= A2A4 .

For part (b), we begin by showing that A1 = A3. Since AB ‖ CD, the altitudes of
△ACD and △BDC are equal; their bases are also equal; so their areas are equal. That
is,

A1 + A2 = A3 + A2

and we have A1 = A3 as claimed. Now write A1 = A, and let A2 = x. From (a), the
total area is

A1 + A2 + A3 + A4 = 2A+ x+
A2

x
= 4A+

(√
x− A√

x

)2

.

Since the square cannot be negative, the total area is at least 4A. If the area is exactly
4A then the square is zero, which gives x = A, that is, A2 = A1. Therefore E bisects AD
(triangles of equal area and equal altitude must have the same base); and from here we
leave it up to you to show that AB = CD, and so the trapezium is a parallelogram.
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