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There’s nothing square about squares!
Peter Brown1

I thought I would share with you a few facts about squares - some well known, and
others perhaps not so well known.

In our journey with numbers, squares are one of the first types of numbers we
encounter in early schooling. The ancient Greeks were fascinated by them, and they
had nice ways to visualise geometrically various identities involving squares.
For example, they proved that for any positive integer n,

12 + 22 + 32 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1) ,

a problem often given to senior students in high school to prove by induction.2

You will recall that square numbers must end in 0, 1, 4, 5, 6 or 9, so, for example, the
number 389808585038543 cannot be a square. There are other restrictions on what a
square number can end in that you might like to think about.

Another interesting fact is that

12 + 22 + · · ·+ 242 = 702 ,

and this is the only time the sum of the first n consecutive squares adds to a square
(except of course for the trivial 12 = 12).

The famous mathematician Euler proved the following remarkable fact in the 18th
century:
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which means that the sum on the left gets as close as we please to π2

6
the more terms

we take. It is known (but slightly harder to prove) that
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where the sum on the left is the sum of the reciprocals of the prime numbers. Thus, the
sum continues to grow without bound the more terms you take. This tells us that in
some sense there are more primes than squares!

By the way, if we change every second sign in the sum of reciprocals of the squares
then we obtain half the sum, that is:
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1Peter Brown is an Honorary Senior Lecturer in Pure Mathematics at UNSW Sydney.
2Can you think of a picture proof of this identity? One such proof is given in the Parabola article [3].
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Pythagorean Triples

Sets of positive integers which can be the side lengths of a right-angles triangle are
called Pythagorean Triples. You will recall the well-known examples such as

4

35

(3,4,5)

12

513

(5,12,13)

40
941

(9,40,41)

Plato mentions one simple way to find some of these: if n is a positive integer, then
(n2−1, 2n, n2+1) is a Pythagorean triplet. For example if n = 3, then we have (8, 6, 10).

A more general way of finding most of the triples is to take any two positive inte-
gers p and q with p > q, and form the triple (p2 − q2, 2pq, p2 + q2). For example, if p = 2
and q = 1, then we have (3, 4, 5). The triple (9, 12, 15) cannot be formed in this way
(you might like to convince yourself of that) but we can obtain all triples by taking a
triple of the form above and multiplying each number by any positive integer you like.
Hence, the most general parametrization of the triples is

(
k(p2 − q2), 2kpq, k(p2 + q2)

)
.

A primitive triple is one where the numbers have no common factors except 1. We
can find all primitive triples by taking two positive integers p and q which are co-prime
(i.e., have no common factor except 1) and not both odd and using the formula above.
For example, taking the coprime integers p = 4 and q = 3, we have (7, 24, 25).3

Sums of two squares

The number 13 can be expressed as the sum of two integer squares; e.g., 13 = 22 + 32.
On the other hand 19 cannot be so expressed (try it and see!). Both of these numbers
are primes, so we will begin by thinking about what primes can be expressed as the
sum of two squares. If you experiment with various primes and look for patterns, then
you may observe that primes of the form 4k + 1 can be expressed as the sum of two
squares and that primes of the form 4k− 1 cannot. (Note that 2 is prime and of neither
shape but, of course, 2 = 12+12). Note that 13 = 4× 3+1 whereas 19 = 4× 5− 1. Here
is the big result:

Theorem 1 (The Two-Square Theorem). If p is an odd prime, then p is the sum of two
squares if and only if p = 4k + 1 for some integer k.

The proof of this result is not all that easy. Most number theory books will have one
for you to consult. If you are familiar with complex numbers, then there is a very neat
way to take two numbers, each of which is the sum of two squares, and express their
product as the sum of two squares.

3You can find more information on Pythagorean triples in the Parabola articles [2, 4, 5, 7].
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Recall that the square of the modulus of the complex number a+ ib (where i2 = −1)
is given by |a+ ib|2 = a2 + b2 :

a

b

|a+
ib|

a+ ib

For example, we know that 13 = 22 + 32 and 5 = 22 + 12. We can write these numbers
as 13 = |2 + 3i|2 and 5 = |2 + i|2. Now,

65 = 13× 5 = |2 + 3i|2|2 + i|2 = |(2 + 3i)(2 + i)|2 = |1 + 8i|2 = 12 + 82 .

We could also write 13 = |3 + 2i|2 and 5 = |2 + i|2; then

65 = 13× 5 = |3 + 2i|2|2 + i|2 = |(3 + 2i)(2 + i)|2 = |4 + 7i|2 = 42 + 72 .

This gives a nice way to write a number as the sum of two squares and also gives us
a hint as to which numbers can be so written. We take any positive integer N and
factorise it as follows:

N = M2p1p2 · · · pm ,

where M2 is the largest square factor of N and p1, p2, . . . , pm are primes. Then N can be
expressed as the sum of the two squares if and only if each of the numbers p1, p2, . . . , pm
is of the form 4k + 1. Moreover, if we can manually write each pi as the sum of two
squares, then we can use complex numbers to write N as the sum of two squares.

For example, if N = 260, then we write N = 260 = 22 × 13 × 5 and then, using the
earlier calculation, we can write

N = 260 = 22(42 + 72) = 82 + 142 .

Sums of three squares

As we saw, not all numbers are the sum of two squares. What about three squares?
Well, it is easy to see that the number 7 is not the sum of three squares and neither is
the number 23.

Euler stated that every number is the sum of three squares unless it is of the form
4ℓ(8k + 7) for some integers k and ℓ. He was not, however, able to prove it. That
honour went to Gauss. It is not too hard to show that a number of this form is not
the sum of three squares but the converse is much more difficult. Most number theory
books skip it!
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Sums of four squares

How many squares then, do we need in order to represent every number as a sum of
squares? The answer happily is 4. Lagrange proved the following theorem.

Theorem 2. Every positive integer is the sum of at most four integer squares.

His proof is found in many number theory books. One can use an idea similar to
one using complex numbers to show how to write the product of two numbers as the
sum of four squares given that each number is expressed as the sum of four squares.
This method uses quaternions rather than complex numbers. Alternatively, one can use
the (equivalent) identity:

(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2) = (aA+ bB + cC + dD)2

+ (aB − bA+ cD − dC)2

+ (aC − bD + cA− dB)2

+ (aD + bC − cB − dA)2 .

For example, we can express 7 and 23 each as the sum of four squares,

7 = 22 + 12 + 12 + 12

23 = 32 + 32 + 22 + 12 .

Hence, we can write their product as the sum of four squares:

161 = 7× 23 = (22 + 12 + 12 + 12)(32 + 32 + 22 + 12) = (2× 3 + 1× 3 + 1× 2 + 1× 1)2

+ (2× 3− 1× 3 + 1× 1− 1× 2)2

+ (2× 2− 1× 1− 1× 3 + 1× 3)2

+ (2× 1 + 1× 2− 1× 3− 1× 3)2

= 122 + 22 + 32 + 22 .

Sums of squares equal to a square

When setting test questions and exercises involving vectors, it is nice to be able to
construct vectors with integer length. In three dimensions, the length of the vector
(a, b, c) is

√
a2 + b2 + c2. Thus, we seek integers a, b, c so that a2 + b2 + c2 is a square.

There are various ways to do this. Here is a simple method. Take a prime p of the
form 4k+1. As we mentioned above, such a prime can be expressed as the sum of two
squares, so

p = a2 + b2 = 4k + 1 .

If we add (2k)2 to both sides, then we obtain a square:

a2 + b2 + (2k)2 = 4k2 + 4k + 1 = (2k + 1)2 .
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For example with p = 17 = 4 × 4 + 1, we have k = 4 and we can write 17 = 42 + 12.
This gives

42 + 12 + 82 = 92

so the vector (4, 1, 8) has length 9.
The prime p = 37 gives k = 9 and leads to (1, 6, 18) which has length 19. By the

way, as you may have guessed, the number p does not necessarily have to be prime;
any number which is the sum of two squares will also work.

An even more demanding requirement is for the vector (a, b, c) to have both integer
length and for the sum a+ b+ c to also be a square!

I came up with the following simple algorithm, motivated by the above. Take any
integer q and let x = 2q2, y = 2q and z = 1. Then, as before, x2 + y2 + z2 = (2q2 + 1)2

but we also require 2q2 + 2q + 1 to be a square, say r2. By multiplying by 2 and doing
some simple algebra, we obtain

(2q + 1)2 − 2r2 = −1 ,

which you might recognise as a Pell-type equation. Using the basic theory of Pell
equations, writing an for 2q+1, we can obtain a sequence of values for q obtained from
the recurrence

an = 6an−1 − an−2 where a0 = 1 , a1 = 7 .

Using the recurrence, we can make up a table of some values.

n 0 1 2 3
an 1 7 41 239
q 0 3 20 119

Using the formulae above, the value q = 3 gives the vector (18, 6, 1) which has integer
length and the sum of the entries is 25; the value q = 20 produces (800, 40, 1), while
q = 119 gives the vector (28322, 238, 1) which again has integer length and the sum of
the entries is 1692.

These algorithms do not, of course, give all the solutions to the stated problems,
just some of them. Here is another far less easy to motivate algorithm. I leave you to
check that it does in fact work.

STEP 1 Choose integers p and q.
STEP 2 Factor the number 6(p+ q)2 + 2q2 into two even integers α and β.
STEP 3 Let s = (α + β)/2 + 3(p+ q).
STEP 4 Then X2 + Y 2 + Z2 and X + Y + Z are both squares, where

X = 2(p2+ q2−s2) , Y = 2
(
(p−s)2− q2+p(q−s)

)
and Z = (q−s)2−p2+4q(p−s) .

For example, with p = 2 and q = −7, we have 6(p + 1)2 + 2q2 = 248 = 4 × 62. So with
α = 4 and β = 62, we find s = 18. This produces X = −542, Y = 314 and Z = 1069 and

X + Y + Z = 292 and X2 + Y 2 + Z2 = 12392 .

You might like to write a computer program to generate other examples.
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