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A gem for teaching elementary probability
Henk Tijms’

1 Introduction

Probability is the bedrock for data science and statistics. A gem for teaching probability
to STEM students is the game of Egg Russian Roulette. This game was played for
several years in The Tonight Show with Jimmy Fallon. In this show, Jimmy plays the
Egg Russian Roulette game with a guest of the show. The guest was always a celebrity
from sports or film: Tom Cruise, Anna Kendrick, Jodie Foster, David Beckham, to name
a few. The guest and Jimmy take turns picking an egg from a carton and smashing it on
their heads. The carton contains a dozen eggs, four of which are raw and the rest are
boiled. Neither Jimmy nor the guest knows which eggs are raw and which are boiled.
The first person who has cracked two raw eggs on their head loses the game.

The entertainment value of seeing famous people with raw yolk and albumin run-
ning down their hair and faces made the game very popular. Incidentally, the origin of
the game has a rich history, dating back to the Middle Ages. In the rural English ham-
let of Swaton (184 inhabitants, currently), the throwing of eggs started around 1322
when the new abbot of the town, who owned all of the poultry, handed out eggs to
loyal churchgoers as alms. Whenever the church was cut off from the rest of the ham-
let by the sometimes overflowing local river, the eggs were chucked to the churchgoers
waiting on the other side of this watercourse. Recently, this tradition has been slightly
adapted and restored: every year since 2006, this little village hosts a world champi-
onship of Russian Egg Roulette, which attracts contestants from all over the world.

Let’s go back to Jimmy Fallon’s Tonight Show. In the show, the guest is the first to
choose an egg. Do you think each player has the same probability of losing the game?
Does the guest of the show has an advantage because there are more hard boiled eggs
to select from at the start? To answer these questions, the method of absorbing Markov
chains will be used. This method essentially boils down to the use of conditional prob-
abilities and matrix calculations, as will be explained in the next section. However,
in some intermediate situations arising during the course of the game the probabil-
ity of the guest of losing the game can be calculated by a simple argument. Suppose
that Jimmy and the guest have each smashed one raw egg on their heads. Then, for
i =2,...,10, let g; be the probability of the guest losing the game when ¢ eggs are left in
the carbon. In other words, g; is the probability that the guest will pick as first a second
raw egg when i — 2 boiled eggs and 2 raw eggs are left in the carbon. If i is even, then
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the next egg will be picked by the guest; otherwise, the host Jimmy picks the next egg.
Therefore,
g2=1.

The other g; can be recursively computed from

B =20, fori=3,57,9;
P22y, fori=4,6,8,10.

These equations are easily explained. For i odd, the guest loses the game only if Jimmy
picks a boiled egg from the i eggs left in the carbon and the guest picks as first a raw
egg from the remaining i — 1 eggs. The joint probability of these two events is =2
multiplied by ¢,_;. For i even, the probability of the guest losing the game is the sum
of the probability of the event that the guest picks directly a raw egg from the carton
with ¢ eggs left and the probability of the event that the guest picks a boiled egg from
the carbon with i eggs left and loses in the remainder of the game with i — 1 eggs left
in the carbon. The first event has probability 2 and the second event has probability
% gi—1. Starting the recursive calculation with g, = 1, you obtain from the recursion
equations the probabilities
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2 Intermezzo: Markov chains

Markov chain analysis is an appealing topic for secondary school students. Using ma-
terial taken from Tijms [2], this section gives a first impression of the fascinating world
of Markov chains. This branch of probability was founded by the Russian mathemati-
cian A.A. Markov (1856-1922) at the beginning of the 20th century. Markov’s method-
ology goes beyond situations as coin-flipping and dice-rolling involving independent
events to chains of linked events. Itis a very powerful probability model that is used to-
day in countless applications in many different areas, such as voice recognition, DNA
analysis, stock control, telecommunications and a host of others. Markov chains are
everywhere in science today. A nice exposition of the early history of Markov chains is
given by Hayes [1].

A Markov chain can be seen as a dynamic stochastic process that randomly moves
from state to state with the property that only the current state is relevant for the next
state. In other words, the memory of the process goes back only to the most recent
state. A picturesque illustration of this would show the image of a frog jumping from
lily pad to lily pad with appropriate transition probabilities that depend only on the
position of the last lily pad visited. In order to plug a specific problem into a Markov
chain model, the state variable(s) should be appropriately chosen in order to ensure
the characteristic memoryless property of the process. The basic steps of the modeling
approach are:



* Choosing the state variable(s) such that the current state summarizes everything
about the past that is relevant to the future states.

* The specification of the one-step transition probabilities of moving from state to
state in a single step.

Using the concept of state and choosing the state in an appropriate way, surprisingly
many probability problems can be solved within the framework of a Markov chain.
The set of states is denoted by I and is assumed to be finite. The one-step transition
probabilities are denoted by

pi; = the probability of going from state i to state j in one step

for i, j € I. The one-step probabilities must satisfy

pij >0 foralli,j € I and Zpijzl foralli e I.

jel

It is convenient to summarize the one-step transition probabilities in a matrix P having
pij as its (7, j)th element.

In Markov chains a key role is played by the n-step transition probabilities. For any
n =1,2,..., these probabilities are defined as

pz(?) = the probability of going from state i to state j in n steps

forall i, j € I. Note that p,g;) = p;j. How to calculate the n-step transition probabilities?
It will be seen that they can be calculated by matrix products. This key fact is based on
the so-called Chapman-Kolmogorov equations

pgl) = ZPEZ_I)PIW‘ foralli,je ITandn=2,3,....
kel

This recurrence relation can be seen by noting that the probability of going from state i
to state j in n steps is obtained by summing the probabilities of the mutually exclusive
events of going from state i to some state £ in the first n — 1 steps and then going from
state k to state j in the nth step.

An extremely useful observation is that the n-step transition probabilities pg) can
be calculated by multiplying the matrix P of one-step transition probabilities by itself

n times. Let’s verify this for n = 2:

2
pgj) = E PikPk;j
kel

for all 7,7 € I. This is exactly the definition for the elements of the matrix product
P x P = P2 The argument can be extended to conclude that pg-l) is the (7, j)th element
of the n-fold matrix product P". This is a very important conclusion: many computa-
tions for finite-state Markov chains can be boiled down to matrix calculations! This is



particularly true for so-called absorbing Markov chains. A Markov chain is said to be
absorbing if there are one or more states ¢ with p;; = 1 and thus p;; = 0 for j # 4. That
is, once the process is in an absorbing state, it always stays there. Absorbing Markov
chains are very useful for analyzing success runs.

Let us illustrate the above concepts with two examples.

Example

The first example deals with coin-tossing: what is the probability of getting a run of
three or more heads in 10 tosses of a fair coin? An absorbing Markov chain with four
states can be used to answer this question. Let state ¢ mean that the last i tosses resulted
in heads for ¢ = 0, 1, 2, 3. State 3 is taken as an absorbing state, and so p33 = 1 and p3; =
0forj =0,1,2. Fori = 0, 1, 2, the one-step transition probabilities are p; ;11 = pip = 0.5
and p;; = 0 otherwise. To find the probability of a success run of length three or more
in 10 coin tosses, the matrix P = (p;;) with 4,5 = 0, 1,2, 3 is multiplied 10 times by
itself. The resulting matrix P'° is

0.2676 0.1455 0.0791 0.5078
0.2246 0.1221 0.0664 0.5869
0.1455 0.0791 0.0430 0.7324
0 0 0 1

PlO —

Since the process stays in State 3 once it is there, the event of three or more consecutive
heads in 10 coin tosses occurs if and only if the process is in state 3 after 10 coin tosses.
The probability of this event can be read from the first row of the matrix P'° and is

equal to pééo) = 0.5078.

Example

Another illustrative example of an absorbing Markov chain is the following random-
walk type of problem. Joe Dalton desperately wants to raise his bankroll of $600 to
$1,000 in order to pay his debts before midnight. He enters a casino to play European
roulette. He decides to bet on red each time using bold play; that is, Joe bets either
his entire bankroll or the amount needed to reach the target bankroll, whichever is
smaller. Thus, the stake is $200 if his bankroll is $200 or $800 and the stake is $400 if
his bankroll is $400 or $600. In European roulette a bet on red is won with probability
+ and is lost with probability 2. What is the probability that Joe will reach his goal?
The solution approach to this problem will guide the solution of Egg Russian Roulette.
To solve Joe’s problem, take a Markov chain with six states ¢ = 0, 1, ..., 5, where State i
means that Joe’s bankroll is 7 x 200 dollars. States 0 and 5 are absorbing and the game
is over as soon one of these states is reached. Thus, pyy = pss = 1. The other p;; are
easily found. For example, the only possible one-step transitions from State i = 2 are
to States 0 and 4, because Joe bets $400 in State 2. Thus, py = 32 and pyy = 3. The
other p;; are given by the following matrix P of one-step transition probabilities:
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from\to 0 1 2 3 4 5
0 1 0 0 0 0 0
1 20 £ 0 0 0
2 2 0 0 0 £ 0
3 0 s 0 0 0 ?
4 0 0 0 £ 0 2
5 00 0 0 0 1

For any starting state, the process will ultimately absorbed in either State 0 or State 5.
The absorption probabilities can be obtained by calculating P" for n sufficiently large.
Trying several values of n, it was found that n = 20 is large enough to have convergence

of all pg»L) to four or more decimals:

1 00000
0.8141 0 0 0 0 0.1859
po _pn_ | 0618 0 0 0 0 0.3820
04181 0 0 0 0 0.5819
02147 0 0 0 O 0.7853
0 00001
You read off from row 4 that the probability of Joe reaching his goal when starting
with $600 is equal to pg@o) = p%l) = ... = 0.5819. Alternatively, this probability can

be calculated by solving four linear equations. To do so, define f; as the probability of
ever getting absorbed in State 0 when the starting state is ¢. By definition, f; = 1 and
f5 = 0. By conditioning on the next state after State i, you get the four linear equations

f1=£x0+£f2
1 1
f2—£x0+3—§f4
f3=;—2f1+£><1
f4:£f3+£x1.

The solution to these linear equations is
£ =0.1859, f,=03820, f3=0.5819 and f; =0.7853.

This is the same solution as found by matrix multiplication. We are now ready to tackle
the problem of Egg Russian Roulette.



3 Markov chain analysis for Egg Russian Roulette

An absorbing Markov chain is used to analyze the game of Egg Russian Roulette. The
state of the Markov chain is described by the triple (¢, 71, r2), where ¢ denotes the num-
ber of smashed eggs, r; is the number of raw eggs picked by the guest and r; is the
number of raw eggs picked by the host of the game. The states satisfy 0 < i < 11 and
r1 + 1 < 3. The process starts in State (0,0,0) and ends when one of the absorbing
states (7,2,0), (¢,2,1), (¢,0,2), or (i,1,2) is reached. The guest loses the game if the
game ends in a state (,2,0) or (¢,2,1) with ¢ odd. In a non-absorbing state (,71,72)
with ¢ even, the guest picks an egg and the process goes either to state (i + 1,71 + 1,73)
with probability =2="2 or to state (i + 1,71, 72) with probability 1 — =2.="2. In a non-
absorbing state (7,7, ;) with ¢ odd, the host picks an egg and the process goes either
to state (i + 1,71, 72+ 1) with probability 4=2="2 or to state (i + 1,71, 75) with probability
1 — 2=0="2_ This sets the matrix P of one- step transition probabilities. The probabil-
ity that the guest will lose can be computed by calculating P'!. This requires that the
states are ordered in a one-dimensional array. It is easier to use a recursion to calculate
the probability of the guest losing the game. For that, you reason in the same way as
in the above gambling problem. For any state (7, 71,72), let p(¢, 71, r2) be the probabil-
ity that the guest will lose if the process starts in state (i,71,72). The goal is to find
p(0,0,0). This probability can be calculated by the recursion with initial conditions
p(7,2,0) = p(i,2,1) = 1 and p(i + 1,0,2) = p(i +1,1,2) = 0 for i = 3,5,7,9,11 and
recursive identities

. 4—ri—ry . 4—ry—r .
p(%ﬁﬂé)212;_2-2]9(24'177"1%-1,7"2)4'(1—m+i2)P(Z+1,717T2)
fori=0,2,4,6,8,10 and
. 4—ri—ry . 4—ry—r )
p(z,rl,rg) = 12;_22]7(2%— 1,T1,7°2 + 1) + (1 — ﬁ)p@ —+ 1,7“1,7’2)

fori=1,3,5,7,9,11. The recursive computations yield the probability 2 that the guest
of the show will lose the game. Interestingly, the game turns out to be falr for the case
of three raw eggs and nine boiled eggs. These result can also verified by computer
simulation — a Python program is easily written. In fact, simulations of the problem
are provided by the videos online of episodes of Egg Russian Roulette in The Tonight
Show by Jimmy Fallon, with Higgins as unsurpassed sidekick with his characteris-
tically shrill voice, reminiscent of the character Igor from the parody movie Young
Frankenstein. In the 18 episodes I found on Internet, the guest lost the game 9 times.
Remarkably, the experimental probability of 50% resulting from this very small sample
size is not far away from the theoretical probability of 55.6%. It might be an interesting
project for students to write a program to simulate the game many times.
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