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Two simple theorems and their applications
Federico Menegazzo1

1 Introduction

More than two years ago, while I was attending a physics class in high school, our
teacher proposed the following problem: “Given a body of ssome fixed mass, how
would you split it so that the gravitational force between the two parts is maximal?”. If
you know a little of physics, then you will immediately recognize that this problem can
be rewritten as: “Which two numbers add to a given sum and have maximal product?”.
The answer is simple and elegant: split the mass into two equal parts! From this simple
concept, I started a sort of mathematical journey. In the beginning, my goal was to
generalize this question, trying to maximize the product of k numbers whose sum
is fixed. I managed to solve this problem in a relatively short period of time. But
everything changed when I found, through a simple google search, that this result is
already well-known, even though it did not appear in any textbook I have ever read.
In that moment, I decided to give this result much more attention, not just to proving
it (something many people had already done on their own) but also to showing some
of its many interesting applications. Among those, there is a “dual” theorem which
involves a fixed product and trying to find the minimal possible sum for the factors.

2 The two theorems

Let a1, a2, . . . , an, L, V be positive real numbers. The two theorems are as follows.

Theorem 1. If a1 + a2 + · · ·+ an = L, then

a1a2 · · · an ≤
(L
n

)n

.

Furthermore, there is equality if and only if a1 = a2 = · · · = an = L
n

.

Theorem 2. If a1a2 · · · an = V , then

a1 + a2 + · · ·+ an ≥ n
n
√
V .

Furthermore, there is equality if and only if a1 = a2 = · · · = an = n
√
V .

1Federico Menegazzo is an undergraduate student at the Department of Mathematics of the Alma
Mater Studiorum in Bologna (the Italian city where the lasagna was born).
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3 Proofs

Intuitively, the two theorems above seem obviously true. For n = 2, the rectangle with
greatest area, given length and height sum a1 + a2 = L, is a square. For instance, the
following rectangles both have length and height sum 1 + 3 = 2 + 2 = 4 but the first
has area 1× 3 = 3 whereas the second is a square and has greater area: 2× 2 = 4.

For n = 3, the box with greatest volume, given dimension sums a1 + a2 + a3 = L,
is a cube. For instance, the following boxes both have dimension sums 1 + 2 + 3 =
2 + 2 + 2 = 6 but the first has volume 3 × 2 × 1 = 6 whereas the second is a cube and
has greater volume: 2× 2× 2 = 8.

In general, the first theorem states that an n-dimensional box has greatest volume,
given some dimension sum, when its dimensions are all equal. The second theorem
states the same, only differently: an n-dimensional box has smallest dimension sum,
given some volume, when its dimensions are all equal. If, instead of dimension sum,
we measured perimeter, surfaces, and so on, then the objects of greatest volume would
be spherical. For instance, the planar shape with greatest area inside a perimeter of
given length is a circle, and the 3-dimensional shape with greatest volume inside a
surface with given area is a sphere; we see this proved in real life by physical masses
pulled into the shape of spheres by their own gravity.

Mathematically, we can prove the two theorems as follows.

Proof of Theorem 1. The theorem is certainly true for n = 1.
For n = 2, define x = a1+a2

2
− a1 =

L
2
− a1; then a1 = L/2− x, a2 = L/2 + x and

a1a2 =
(L
2
− x

)(L
2
+ x

)
=

(L
2

)2

− x2 ≤
(L
2

)2

with equality exactly when x = 0; that is, when a1 = a2 =
L
2

.
Suppose that n ≥ 3 and that a1a2 · · · an is greatest possible. Assume that ai ̸= aj for

some i and j with i < j. Since the theorem is true for n = 2, it follows that aiaj < a′ia
′
j

where a′i = a′j = (ai + aj)/2. Then a1 + · · ·+ ai + · · ·+ aj + · · ·+ an = L and

a1 · · · ai · · · aj · · · an < a1 · · · a′i · · · a′j · · · an

which contradicts the maximality of a1a2 · · · an. Therefore, the numbers a1, . . . , an must
be equal, and the theorem follows. 2
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Theorem 2 can be proved similarly. Instead, we give a different proof.

Proof of Theorem 2. Set L = a1 + a2 + · · ·+ an. By Theorem 1,

V = a1a2 · · · an ≤
(L
n

)n

,

with equality exactly when L = a1 + a2 + · · ·+ an = L
n

. In other words,

a1 + a2 + · · ·+ an = L ≥ n
n
√
V .

with equality exactly when a1 = a2 = · · · = an = L/n = n
√
V . 2

We see that Theorem 2 follows from Theorem 1, and it is easy to prove the converse;
indeed, the two theorems are equivalent.

4 Applications

The two theorems are very simple and yet have some very interesting applications.
This section shows some of these applications.

4.1 Arithmetic and geometric mean

The arithmetic mean and the geometric mean of positive numbers a1, . . . , an are defined
respectively as

a1 + a2 + · · ·+ an
n

and n
√
a1a2 · · · an .

Theorem 1 implies the well-known fact that the geometric mean is less than or equal
to the arithmetic mean:

n
√
a1 · · · an ≤ n

√(a1 + a2 + · · ·+ an
n

)n

=
a1 + a2 + · · ·+ an

n
.
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4.2 Two nice inequalities

Let ak = 1
2k

for k = 1, . . . , n. Then

L = a1 + a2 + · · ·+ an =
n∑

k=1

2−k = 1− 1

2n

and

a1a2 · · · an =
n∏

k=1

2−k = 2−(1+2+···+n) .

We can now use the identity2 1 + 2 + · · · + n =
(
n+1
2

)
where

(
n+1
2

)
is the binomial

coefficient equal to n(n+1)
2

. By Theorem 1,

2−(
n+1
2 ) = a1a2 · · · an <

(L
n

)n

=
(1− 1

2n

n

)n

<
1

nn
.

This gives us the following nice inequality.

Lemma 3. For each integer n ≥ 1, 2(
n+1
2 ) > nn.

Now define ak =
1

k+1
for k = 1, . . . , n. Then

L = a1 + a2 + · · ·+ an =
n∑

k=1

1

k + 1
and a1a2 · · · an =

n∏
k=1

1

k + 1
=

1

(n+ 1)!
.

Now, it is known that

ln(n+ 1) =

∫ n+1

1

1

x
dx ,

so, since 1
x

is strictly decreasing for x > 1,

ln(n+ 1) >
n∑

k=1

1

k + 1
= L .

Therefore, Theorem 1 implies that

1

(n+ 1)!
= a1a2 · · · an <

(L
n

)n

<
( ln(n+ 1)

n

)n

.

This gives us another nice inequality.

Lemma 4. For each integer n ≥ 1, nn < (n+ 1)!
(
ln(n+ 1)

)n.
2For proofs of this identity, see the Parabola article Proof by picture: A selection of nice picture proofs.
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4.3 The greatest maximal product

Consider a positive number L. We know from Theorem 1 that if positive numbers
a1, a2, . . . , an have sum L, then their product has the upper bound

a1a2 · · · an ≤
(L
n

)n

.

We might ask: how large can this bound be? To answer this question, I define the
function

f(x) =
(L
x

)x

.

As can be seen from a quick plot (or an easy proof), the function has a maximum:

x

f(x)

To find this maximum, we solve d
dx
f(x) = 0:

0 =
d

dx
f(x) =

d

dx

(L
x

)x

=
d

dx
eln((

L
x
)x) =

d

dx
ex ln L

x = ex ln L
x

d

dx
x ln

L

x

= ex ln L
x

(
ln

L

x
+ x

d

dx
ln

L

x

)
= ex ln L

x

(
ln

L

x
+ x

d

dx
(lnL− lnx)

)
= ex ln L

x

(
ln

L

x
+ x

1

x

)
= ex ln L

x

(
ln

L

x
− 1

)
.

Since ex ln L
x > 0, we see that ln L

x
− 1 = 0; that is, x = L/e. We conclude that if we fix L

and let n vary, then the maximal product a1a2 · · · an of positive numbers with sum L is
n = L/e or, more precisely, one of the two integers closest to this number:

n =
⌊L
e

⌋
or n =

⌈L
e

⌉
.

The product then approximately equals

a1a2 · · · an =
(L
n

)n

=
( L

L/e

)L/e

= e
L
e .

Hence, I define the greatest maximal product of L to be this function:

GMP (L) = max
x

f(x) = e
L
e .

Two simple yet fundamental properties of this function are as follows.

Lemma 5. (a) If ℓ < m, then GMP (ℓ) < GMP (m); (b) GMP (e lnn) = n.
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4.4 The minimal sum of factors of a number

Every natural number n has a unique factorization into a product of prime powers:

n = pα1
1 pα2

2 · · · pαk
k

We define

Z(n) =
k∑

i=1

piαi .

For example, 36 = 2232, 100 = 2252 and 51 = 31171, so

Z(36) = 4 + 6 = 10

Z(100) = 4 + 10 = 14

Z(51) = 3 + 17 = 20 .

Then

n = pα1
1 pα2

2 · · · pαk
k =

α1︷ ︸︸ ︷
p1 · · · p1

α2︷ ︸︸ ︷
p2 · · · p2 · · ·

αk︷ ︸︸ ︷
pk · · · pk

≤ GMP (

α1︷ ︸︸ ︷
p1 + · · ·+ p1+

α2︷ ︸︸ ︷
p2 + · · ·+ p2+ · · ·+

αk︷ ︸︸ ︷
pk + · · ·+ pk)

= GMP (Z(n)) .

By Lemma 5 (b), GMP (e lnn) = n ≤ GMP (Z(n)). Lemma 5 (a) therefore implies the
following result.

Lemma 6. Z(n) ≥ e lnn.

4.5 A surprising factorial inequality

Now let’s consider the factorial n!, where n is a natural number. Since lnx is strictly
increasing and positive for x > 1,

e lnn! = e
n∑

i=1

ln i ≥ e

∫ n

1

lnx dx = e
[
x lnx− x

]n
1
= e(n lnn− n+ 1) .

Now, by Lemma 5,

n! = GMP (e lnn!) ≥ GMP (e n lnn− e n+ e) = e
e n lnn−e n+e

e = en lnn−n+1 .

In other words, we have the following interesting inequality.

Lemma 7. For each integer n ≥ 1, n! ≥ en lnn+1

en
.
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