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Patterns and the many paths of problem solving
Ulfa Aulyah Idrus1

1 Introduction

Consider the following three equations:

22 + 32 + 62 = 72

32 + 42 + 122 = 132

42 + 52 + 202 = 212 .

Can you spot a pattern here?

Here are three other equations [1]:

32 + 42 = 52

102 + 112 + 122 = 132 + 142

212 + 222 + 232 + 242 = 252 + 262 + 272 .

Do they have a specific pattern?

Furthermore, look at the following pattern:

13 + 23 = (1 + 2)2

13 + 23 + 33 = (1 + 2 + 3)2

13 + 23 + 33 + 43 = (1 + 2 + 3 + 4)2 .

What is the general pattern?

For the first set of equations above, we might guess that

Identity 1.
a2 + (a+ 1)2 + (a(a+ 1))2 = (a(a+ 1) + 1)2

for all natural numbers a.

Similarly for the second set of equations above, we can predict that
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Identity 2.
2n2+2n∑
k=2n2

k2 =
2n2+3n∑

k=2n2+2n+1

k2

for all natural numbers n.

Furthermore, for the third set of equations above, it is probably valid that

Identity 3.
13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

for every natural number n.

The goal of our paper is to prove these three conjectures in multiple ways, namely
using algebraic and geometric methods. We will show that two quantities are equal
if they can be manipulated into the same forms using algebraic operations. We will
then represent quantities using geometric shapes. We represent addition by combining
shapes and represent subtraction by removing shapes. We also visualize multiplication
by the area of a rectangle while division as partitioning a rectangle into equal parts.
Finally, we show equality of two collections of objects by proving that both collections
can be arranged into two congruent objects without gaps and overlaps.

2 Pattern 1

Proof with Algebra

We calculate:

a2 + (a+ 1)2 + (a(a+ 1))2 = a2 + (a2 + 2a+ 1) + (a4 + 2a3 + a2)

= a4 + 2a3 + 3a2 + 2a+ 1

= a2(a2 + 2a+ 1) + 2a(a+ 1) + 1

= (a(a+ 1))2 + 2a(a+ 1) + 1

= (a(a+ 1) + 1)2 . 2

Proof with Pictures

Figure 1 shows that three squares with areas a(a + 1)2, a2 and (a + 1)2 that together
form a square whose area is ((a+ 1) + 12). Accordingly,

a2 + (a+ 1)2 + (a(a+ 1))2 = (a(a+ 1) + 1)2 . 2
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Figure 1: Three squares with areas a(a+1)2, a2 and (a+1)2 forming a square with area
((a+ 1) + 12).

3 Pattern 2

The second type of equations start with the numbers

3, 10, 21, 36, 55, . . . .

The successive differences between these numbers are

7, 11, 15, 19, . . . ,

which appears to form the linear sequence 7 + 4n for n = 1, 2, . . .. If this is true, then
the numbers 3, 10, 21, . . . form a quadratic sequence an2 + bn + c for n = 1, 2, . . .. This
sequence has values 3, 10 and 21 for n = 1, 2, 3.

We can solve the equations

a+ b+ c = 3

4a+ 2b+ c = 10

9a+ 3b+ c = 21

to find that a = 2, b = 1 and c = 0. The first number in the nth equation is therefore
2n2 + n.

We also can see from the pattern that for the n-th line, there are n + 1 terms on
the left hand side and there are n terms on the right hand side. Furthermore, we can
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see that the terms on each line are consecutive integers. We finally conclude that the
equations have the following form:

2n2+2n∑
k=2n2+n

k2 =
2n2+3n∑

k=2n2+2n+1

k2 .

for all natural numbers n.

Alternatively, we can prove the above equation by showing that

2n2+3n∑
k=2n2+2n+1

k2 −
2n2+2n∑

k=2n2+n+1

k2 = (2n2 + n)2 .

Furthermore, let a = 2n2 + n; then the equation above can be simplified to

a+2n∑
k=a+n+1

k2 −
a+n∑

k=a+1

k2 = a2 .

Proof with Algebra

We will prove that for every natural number n and for a = 2n2 + n,

a+2n∑
k=a+n+1

k2 −
a+n∑

k=a+1

k2 = a2 .

We can see that

a+2n∑
k=a+n+1

k2 −
a+n∑

k=a+1

k2 = (a+ n+ 1)2 + (a+ n+ 2)2 + · · ·+ (a+ 2n− 1)2 + (a+ 2n)2

−
(
(a+ n)2 + (a+ n− 1)2 + · · ·+ (a+ 2)2 + (a+ 1)2

)
= (2a+ 2n+ 1)

(
1 + 3 + · · ·+ (2n− 3) + (2n− 1)

)
= (2a+ 2n+ 1)n2

= (4n2 + 2n+ 2n+ 1)n2

= 4n4 + 4n3 + n2

= (2n2 + n)2

= a2 . 2

Proof with Pictures

We will prove that for every natural number n and for a = 2n2 + n,

a+2n∑
k=a+n+1

k2 −
a+n∑

k=a+1

k2 = a2 .

4



We first define Ai = (a+ n+ i)2 and Bi = (a+ n+ 1− i)2 for each i = 1, . . . , n, and
note that

a+2n∑
k=a+n+1

k2 =
n∑

i=1

Ai and
a+n∑

k=a+1

k2 =
n∑

i=1

Bi .

We place B1 on the corner of A1; see Figure 2a. Figure 2b shows that the remaining
green area can be rearranged into a rectangle with height

(a+ n) + (a+ n+ 1) = 2a+ 2n+ 1 = b .

Notice that the use of b here is for convenience.

a+ n 1

1

2a

a+ n 1

2a
+
2n

+
1
=

b

2b

Figure 2: Decomposing A1 from B1

We apply the same procedure to each combination of Ai−Bi. Then, we arrange the
resulting rectangles according to Figure 3a if n is even and according to Figure 3b if n
is odd.

We can see that any value of n will form a rectangle with a width of 2n and a height
of n

2
b. Accordingly, the area of the rectangle formed is

n

2
b(2n) = bn2 = (2a+ a/n)n2 = 2an2 + an = a(2n2 + n) = a2 .

Therefore,
a+2n∑

k=a+n+1

k2 −
a+n∑

k=a+1

k2 = a2 .

2
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Figure 3: Arranging decomposed Ai −Bi figures into a rectangle.

4 Pattern 3

4.1 Proof with Algebra

We will prove that for every natural number n,

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

using mathematical induction. For n = 2,

13 + 23 = 1 + 8 = 9 = 32 = (1 + 2)2 .

Now, assume that, for some natural number i ≥ 2,

13 + 23 + · · ·+ i3 = (1 + 2 + · · ·+ i)2 .

Then

13 + 23 + · · ·+ i3 + (i+ 1)3 = (1 + 2 + · · ·+ i)2 + (i+ 1)3

=

(
i(i+ 1)

2

)2

+ (i+ 1)3

=
(i4 + 2i3 + i2) + 4(i3 + 3i2 + 3i+ 1)

4

=
i4 + 6i3 + 13i2 + 12i+ 4

4
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=

(
(i+ 1)(i+ 2)

2

)2

=
(
1 + 2 + · · ·+ i+ (i+ 1)

)2
.

Therefore,
13 + 23 + · · ·+ i3 + (i+ 1)3 = (1 + 2 + · · ·+ i+ (i+ 1))2 .

and the proof follows by induction. 2

4.2 Proof with Pictures

We will prove that for every natural number n,

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

using pictures.
One way to prove the equality between squares and cubes is to consider the squares

as the base area of a cuboid with a height of 1 unit. By the formula, the volume of a
cuboid whose base area is (1 + 2+ · · ·+ n)2 and height is 1 is (1 + 2+ · · ·+ n)2. We will
show that such cuboids can be arranged into a collection of cubes with sides 1, 2, . . . , n.

For n = 5, we can illustrate the base of the cuboid as follows:

Figure 4: Partition of the base of a cuboid with a dimension of (1 + 2 + 3 + 4 + 5)2

We can see that we have one layer of cuboids with a base area of 12, resulting in a
cube of volume 13. We also have two layers of cuboids with a base area of 22, resulting
in a cube of volume 23, and so on, until we have five layers of cuboids with a base area
of 52, resulting in a cube of volume 53. We can continue the pattern for any natural
number n. Accordingly,

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 . 2
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5 Afterthought

More General Values?

We have proven the some identities both algebraically and geometrically. For Iden-
tity 1, it is true for all natural numbers a. Is it possible to change a into a non-natural
number? If so, is the identity still true if a is a fraction, or negative, or the more chal-
lenging, complex? How about the value of n in Identity 2 and Identity 3?

Other Scenarios?

We can rewrite Identity 1 as follows:

a2 + (a+ 1)2 =
(
a(a+ 1) + 1

)2 − (
a(a+ 1)

)2
.

In other words, the sum of the square of two consecutive natural numbers can be writ-
ten as the difference between the square of two other consecutive natural numbers.
It turns out that many other pairs of squares can be written as the difference between
the square of two consecutive natural numbers. Under what condition do a pair of
squares do not possess the property? How do you visualize your answer?

Next, how can you use Identity 3 to find a shortcut to calculate

23 + 43 + 83 + · · ·+ (2n)3

and
13 + 33 + 53 + · · ·+ (2n− 1)3 ?

More Patterns?

Let us observe another pattern. Let t(n) be the number of divisors of a natural num-
ber n. For example, t(1) = 1, t(4) = 3, t(12) = 6, and t(p) = 2 for any prime p.

Furthermore, let
∑

d|n f(d) denote the sum of all divisors of n. For example,∑
d|12

f(d) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12) .

Let us observe the following interesting calculation:∑
d|6

t(d)3 = t(1)3+t(2)3+t(3)3+t(6)3 = 13+23+23+43 = 81 = (1+2+2+4)2 =
(∑

d|6

t(d)
)2

.

In addition, for any prime p, we can see that∑
d|p

t(d)3 = t(1)3 + t(p)3 = 13 + 23 = 9 = (1 + 2)2 =
(∑

d|p

t(d)
)2

.
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In fact, for any prime power pa, using Identity 3 we have proven that∑
d|pa

t(d)3 = t(1)3 + t(p)3 + t(p2)3 + · · ·+ t(pa)3

= 13 + 23 + 33 + · · ·+ (a+ 1)3

= (1 + 2 + 3 + · · ·+ (a+ 1))2

= (t(1) + t(p) + t(p2) + · · ·+ t(pa))2

=
(∑

d|pa
t(d)

)2

.

Now, we conclude that for some values of n,∑
d|n

t(d)3 =
(∑

d|n

t(d)
)2

.

Can you find all possible values of n such that the equation above is valid? In what
ways can we visualize this pattern?

Now, let us try the other way around. Look at the following picture:

Figure 5: Partition of the base of a prism with a dimension of (1 + 2 + 3 + 4 + 5)2

What algebraic identity can we come up from the given picture?
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