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The harmonic series and its close friends: A dive into the
Kempner series

Sunil Vittal1

Introduction

Within a standard calculus class, convergent and divergent series are extremely im-
portant, but students do not learn what happens when series are slightly changed. By
changing the harmonic series, in [2] during the 1910s, A.J. Kempner proved the con-
vergence of such a series by removing every term that included the digit 9. We seek to
do the same thing here but generalize the result to all bases.

Preliminary Definitions and Theorems

The next few definitions and theorems are background knowledge and notation re-
quired to understand the ideas established in the body of the paper.

Definition 1. Let
∞∑
n=0

sn = s0 + s1 + s2 + · · ·

be some series and define Si =
∑i

n=0 = s0+ s1+ · · ·+ si to be the ith partial sum of this
series. This series is said to converge to a value C if and only if the limit of partial sums,
lim
i→∞

Si, exists. In particular, this limit equals C. Conversely, if lim
i→∞

Si does not exist or
equals infinity, then we say the series diverges.

Definition 2. A geometric series is any series of the form
∞∑
n=0

arn = a+ ar + ar2 + · · · .

Theorem 3. The geometric series converges to
a

1− r
when |r| < 1 and diverges when |r| ≥ 1.

Proof.

∞∑
n=0

arn = a
1− r

1− r

∞∑
n=0

rn =
a

1− r

( ∞∑
n=0

rn −
∞∑
n=0

rn+1

)
=

a

1− r

( ∞∑
n=0

rn −
∞∑
n=1

rn
)

=
a

1− r
r0 =

a

1− r
.
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Definition 4. The harmonic series is the series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · · .

Theorem 5. The harmonic series diverges.

Proof.

∞∑
n=0

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ · · · = 1 +

1

2
+

1

2
+

1

2
+ · · · .
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Definition 6. The p-series is defined as
∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ · · · .

Note that when p = 1, we get the harmonic series.

Theorem 7. The p-series diverges when p ≤ 1 and converges when p > 1.

For a proofs of Theorem 7, we point the reader to the textbook [1].

Definition 8. Let b denote a base, x a digit, and i ∈ N. Define the set

S(x,b,i) = {Numbers not containing the digit x in base b in the interval [bi, bi+1)} .

Note that the numbers in this set have i+ 1 digits. Also define

S(x,b) = {Numbers not containing the digit x in base b} .

Now we’re all set to present the main results.

The harmonic series with certain terms deleted

Digit 9 deleted in base 10

Here we are working with the set S(9,10) and note the cardinality of this set.

Proposition 9. |S(x,10,i)| = 8 · 9i for each nonzero digit x.

Proof. Let n ∈ N be a number with i + 1 digits. For the leftmost digit of n, we have 8
choices since we can’t choose 0 or x. For the other i digits, we have 9 choices since we
can’t choose x. Multiplying these numbers gives 8 · 9i. 2

The cardinality |S(9,10,i)| = 8 · 9i turns out to be important for determining the con-
vergence of Kempner series which is the series of inverses of all positive integers that do
not contain 9 as a digit. This series who first studied in the 1910s, by Kempner [2] who
proved that this series converges:
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Proposition 10.
∞∑

n∈S(9,10)

1

n
converges.

It’s interesting that the series of the deleted terms (containing 9 among their digits)
diverges since this sum is strictly greater than

∑∞
k=0

1
10k+9

>
∑∞

k=0
1

10k
= 1

10

∑∞
k=0

1
k

which diverges. Oddly, the difference between the harmonic series and the series of
deleted terms is a convergent series.

Proof. We can write

∞∑
n∈S(9,10)

1

n
=

|S(9,10,1)|=8︷ ︸︸ ︷
1 + · · ·+ 1

8
+

1

10
+ · · ·+ 1

18
+

1

20
+ · · ·+ 1

88︸ ︷︷ ︸
|S(9,10,2)|=89

+ · · · .

Note that

|S(9,10,1)|=8︷ ︸︸ ︷
1 + · · ·+ 1

8
< 1 + · · ·+ 1 = 8 ;

|S(9,10,2)|=89︷ ︸︸ ︷
1

10
+ · · ·+ 1

88
<

1

10
+ · · ·+ 1

10
=

89

10

and, in general for i ≥ 1, that

|S(9,10,i)|=8·9i︷ ︸︸ ︷
1

10i
+ · · ·+ 1

M
<

1

10i
+ · · ·+ 1

10i
=

8 · 9i

10i
.

where M = maxS(9,10,i). By these upper bounds and by Theorem 3, we see that

∞∑
n∈S(9,10)

1

n
<

∞∑
i=0

8
( 9

10

)i

=
8

1− 9
10

= 80 < ∞ ,

so the series converges. 2

By modifying the above proof slightly, we can generalise Proposition 10 as follows.

Theorem 11. For each nonzero digit x,
∞∑

n∈S(x,10)

1

n
< 80. In particular,

∞∑
n∈S(x,10)

1

n
converges.

In the 1970s, Baille [3] approximated this Kempner series in Theorem 11 to around
22.92 and continuing on this problem more recently in 2008, Baille and Schmelzer [4]
found an efficient algorithm for any string of omitted digits.
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Deleting a digit in base b

We now generalise the above results to all bases b ≥ 2.

Proposition 12. |S(x,b,i)| = (b− 2)(b− 1)i.

Proof. For each base b (i + 1)-digit number n ∈ N, there are b − 2 choices for the first
digit and b− 1 choices for the other i digits. 2

Theorem 13.
∞∑

n∈S(x,b)

1

n
< (b− 2)b. In particular,

∞∑
n∈S(x,b)

1

n
converges.

Proof. By Proposition 12 and Theorem 3,
∞∑

n∈S(x,b)

1

n
=

∞∑
i=1

∞∑
n∈S(x,b,i)

1

n
<

∞∑
i=1

|S(x,b,i)|
1

bi

=
∞∑
i=1

(b− 2)
b− 1

bi
=

∞∑
i=1

(b− 2)

(
b− 1

b

)i

= (b− 2)b .
2

p-series with certain terms deleted

This section expands the previous results for harmonic series.

Theorem 14.
∞∑

n∈S(x,b)

1

np
converges if and only if p > logb(b− 1).

Proof. For each integer i ≥ 1, define

Ai =
∑

n∈S(x,b,i)

1

np
.

By Proposition 12,
(b− 2)(b− 1)i

(bp)i+1
< Ai <

(b− 2)(b− 1)i

(bp)i

since
1

bpi
is the largest term in Ai and

1

(bp)i+1
is strictly less than all terms in Ai. There-

fore,
∞∑
i=0

(b− 2)(b− 1)i

(bp)i+1
<

∞∑
i=0

Ai <
∞∑
i=0

(b− 2)(b− 1)i

(bp)i
.

Simplifying further gives us

b− 2

bp

∞∑
i=0

(
b− 1

bp

)i

<
∑

n∈S(x,b,i)

1

np
< (b− 2)

∞∑
i=0

(
b− 1

bp

)i

.

Therefore by Theorem 3, the series
∑

n∈S(x,b,i)

1
np converges if and only if

b− 1

bp
< 1; that

is, when p > logb (b− 1). 2
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