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Solutions 1651–1660
Problems 1651–1660 are dedicated to the editor of Parabola , Thomas Britz, and his part-
ner Ania, in celebration of the arrival of their twin sons Alexander and Benjamin.

Q1651 To celebrate Alexander and Benjamin’s 4–month “birthday”, Thomas decided
to bake a square cake and share it equally among the twins by cutting from the centre
of the square to the midpoint of each side, and giving pieces A1, A3 to one twin and
A2, A4 to the other.
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A4

Unfortunately, when the cake came out of the oven, it wasn’t exactly square. . .
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However, the twins’ mother Ania was able to assure Thomas that cutting the cake in
the same way (from some point to the midpoint of each edge, as before) would still
give equal shares to Alexander and Benjamin. Prove that she was correct.

SOLUTION We wish to show that in any (convex) quadrilateral P1P2P3P4, if X is a
point inside the quadrilateral and M1,M2,M3,M4 are the midpoints of P1P2, P2P3, P3P4, P4P1

respectively, then the total area of Alexander’s pieces XM1P2M2 and XM3P4M4 is
equal to the total area of Benjamin’s pieces XM2P3M3 and XM4P1M1.
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Now Alexander’s share consists of the triangular areas T1, T2, T3, T4, and Benjamin’s
share consists of S1, S2, S3, S4. However, triangles △XM1P1 and △XM1P2 have the
same bases (because M1 is the midpoint of P1P2) and the same altitudes, so they have
the same area: that is, S1 = T1. By the same argument, S2 = T2, S3 = T3 and S4 = T4,
and therefore the total amount of cake is the same for each twin.

Q1652 Alexander and Benjamin meet a girl called Christine, who tells them that she
has a twin sister Denise.
What is the probability that Christine and Denise are identical twins?

Assume the following figures: 30% of all twins are identical, 70% are non–identical;
identical twin pairs are equally likely to be boy–boy or girl–girl (boy–girl is impossi-
ble); of non–identical twins 30% are boy–boy, 30% are girl–girl and 40% are boy–girl.

SOLUTION In the entire population of twins, a proportion 0.5× 0.3 are identical girls
and 0.3×0.7 are non–identical girls. Since Christine says she has a twin sister, she must
be in one of these categories; and the probability that she is in the former is

0.5× 0.3

0.5× 0.3 + 0.3× 0.7
=

5

12
.

Q1653 Alexander and Benjamin are playing in their local park. This park consists of
an n by n array of square gardens, separated by paths. Alexander starts at the south–
west corner of the park and walks along the paths at a speed which takes him along
the side of any garden square in exactly one minute, and always heads north or east.
Benjamin walks at the same speed, but starts at the north–east corner and always walks
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south or west. Find the probability that Alexander and Benjamin meet after n minutes.

A

B

SOLUTION After n minutes, each of the twins will be at some point on the north–
west/south–east diagonal of the park; that is, at one of the intersections marked in red.
We wish to find the probability that they are at the same intersection. Now if we set up
a coordinate system such that Alexander starts at (0, 0) and Benjamin starts at (n, n),
then the diagonal points have coordinates (k, n − k) for k = 0, 1, 2, . . . , n. Alexander’s
trip from (0, 0) to (k, n − k) must consist of k steps in an easterly direction and n − k
in a northerly direction, and can be specified by a list such as NNEN · · ·NNNE. The
number of such lists is given by the binomial coefficient C(n, k). The number of ways
in which Benjamin can reach (k, n − k) is exactly the same. And the total number of
possibilities for 2n choices of direction (n for each twin) is 22n. Since k can be any
integer from 0 to n, the required probability is

p =
1

22n
(

C(n, 0)2 + C(n, 1)2 + C(n, 2)2 + · · ·+ C(n, n)
)

.

We can simplify the sum in brackets by considering the coefficient of xn in the binomial
expansion of

(x+ 1)n(1 + x)n = (x+ 1)2n .

A term in xn on the left hand side is obtained as a product of terms in xk1n−k and
1kxn−k; the coefficient is C(n, k)C(n, k) = C(n, k)2. Any k from 0 to n gives a product
of xn, so the total coefficient is

C(n, 0)2 + C(n, 1)2 + C(n, 2)2 + · · ·+ C(n, n)2 .

But the coefficient of xn in (x+1)2n is C(2n, n), which therefore equals this sum. Hence
the required probability is

C(2n, n)

22n
.
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Q1654 Alexander and Benjamin are walking in the park again, and we can now reveal
that in actual fact the number of gardens is 6 × 6. If Alexander walks from A to B
along the path shown in red, in how many ways can Benjamin walk from B to A
without meeting Alexander’s path (except at the beginning and end of course)? As in
the previous problem, Benjamin only walks in a southerly or westerly direction.

A

B

SOLUTION It is clear that Benjamin’s first walk must be to the south and that there
is only one way to do it. We indicate this by writing a 1 on the (6, 5) intersection.
Since Benjamin can only reach a path intersection from the north or from the east, the
number of ways to get to each intersection is obtained by adding the number of ways
of reaching the intersections immediately to the north and east, provided that these do
not lie outside the park or on Alexander’s red path. So we can fill in the diagram step
by step to give the final answer of 81 ways.
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Q1655 Alexander and Benjamin are visiting the nation of Twinnia. In this country
there is a rule that on any given day, twins must behave alike in terms of telling the
truth: that is, both must tell the truth or both must lie; it is forbidden for one to tell the
truth and the other to lie. You overhear a conversation between four people. Two of
them are Alexander and Benjamin, but you cannot decide which is which, though one
of them is wearing a yellow jumper and one is wearing a red jumper. The other two
are Ellie and Fiona: they look very similar, and you are not sure whether or not they
are twins. The following statements are made.

Ellie: Fiona and I are twins.

Fiona: the boy in the yellow jumper is Benjamin.

Boy in yellow: the boy in the red jumper is Alexander.

Boy in red: Ellie and Fiona are not twins.

Can you determine which of the boys is which? Can you decide whether Ellie and
Fiona are twins or not?

SOLUTION If Ellie spoke the truth, then she and Fiona are twins, so that Fiona must
also have spoken the truth. Therefore the boy in yellow is Benjamin, and he spoke the
truth when he said that the other boy was Alexander. Since Alexander is Benjamin’s
twin, he also spoke the truth, and so Ellie and Fiona are not twins. This contradicts
what we discovered earlier; so the situation is impossible, and we must conclude that
Ellie did not speak the truth.

Since Ellie lied and the boy in red contradicted her, he must have told the truth, and
since the boy in yellow is his twin, he also spoke the truth. Therefore Alexander is
wearing red and Benjamin is wearing yellow. Moreover, this means that Fiona spoke
the truth while Ellie lied, and so they cannot be twins.

Q1656 Primes which differ by 2 are called twin primes. Prove that, with two excep-
tions, if a and b are twin primes then the last digit of (a + b)(a2 + b2) is 0.

SOLUTION Two examples of twin primes are a = 3, b = 5 and a = 5, b = 7; in these
cases we calculate

(a+ b)(a2 + b2) = 272 or 888

which do not end in 0, and these are the two exceptions referred to in the question.
Now the last digit of a prime, other than 2 or 5, cannot be 0, 2, 4, 5, 6, 8. Since twin
primes differ by 2, the last digits of a, b are 1, 3 or 7, 9 or 9, 1, or vice versa . In these
cases, the last digits of a+ b and of a2 + b2 are respectively

4 and 0 ; or 6 and 0 ; or 0 and 2 ;

and in every case, the last digit of the product is 0.

5



Q1657 Thomas is designing a new nursery for his twins Alexander and Benjamin.
They will each have a cradle in the shape of an ellipse, placed side by side. In suitable
coordinates, the ellipses have equations

(x+ 1)2 +
y2

4
= 1 and (x− 1)2 +

y2

4
= 1 .

The cradles will be surrounded by a wooden floor. As a mathematician, Thomas is
very keen on symmetry, so the surround will also be an ellipse, in this case having
equation

x2

a2
+

y2

b2
= 1 ;

but he is also conscious of using space efficiently, so he wants this ellipse to have the
smallest possible area. What values of a and b should he choose?

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

benjamin benjamin benjamin
benjamin benjamin benjamin

alexander alexander alexander
alexander alexander alexander

alexander alexander alexander
alexander alexander

alexander alexander alexander
alexander alexander alexander

alexander alexander
alexander alexander alexander

alexander alexander alexander
alexander alexander

alexander alexander alexander
alexander alexander alexander

alexander alexander alexander
alexander alexander alexander

alexander alexander alexander
alexander alexander alexander

alexander alexander alexander
alexander alexander alexander

alexander alexander alexander
alexander alexander alexander

x

y

2−2

x2

a2
+

y2

b2
= 1

SOLUTION It is clear from the diagram that the “boundary ellipse” should be tangent
to each of the “cradle ellipses”; by symmetry, we only need to consider the tangency
in the first quadrant. By calculus, the gradient of the tangent to the boundary ellipse is
given by

2x

a2
+

2y

b2
dy

dx
= 0

and so
dy

dx
= − b2

a2
x

y
,

provided that y 6= 0. (This formula can also be determined without calculus, if you
wish.) Suppose that the two ellipses meet with a common tangent at (p, q), and assume
initially that q 6= 0. Then we have

p2

a2
+

q2

b2
= 1 , (p− 1)2 +

q2

4
= 1 , − b2

a2
p

q
= −4

1

p− 1

q
.

The third equation is easily solved to give

p =
4a2

4a2 − b2
.
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Taking b2 times the first equation minus 4 times the second eliminates q, giving

b2p2

a2
− 4(p− 1)2 = b2 − 4 ;

and we can now substitute the preceding expression for p into this. Some careful alge-
bra results in an unexpectedly simple equation

b4 − 4a2b2 + 16a2 = 0 ,

which can be treated as a quadratic in b2 and solved to give

b2 = 2a
(

a±
√
a2 − 4

)

.

We must have a > 2, because a = 2 would correspond to q = 0, which we have ruled
out. If we take the + sign in this formula we have b2 > 2a2 and hence

p =
4a2

4a2 − b2
>

4a2

2a2
= 2 ,

which is impossible; so we must take the − sign. Thus

b2 = 2a
(

a−
√
a2 − 4

)

.

This relation between a and b guarantees that we have an ellipse which is tangent to the
“cradle” ellipses; we now need to find which of all these possibilities has the smallest
area. The area of the ellipse is given by the formula A = πab, and so we consider

a2b2 = 2a3
(

a−
√
a2 − 4

)

.

Equating the derivative of the right hand side to zero and solving, we have

6a2
(

a−
√
a2 − 4

)

+ 2a3
(

1− a√
a2 − 4

)

= 0 .

Collecting terms gives

8a3 = 6a2
√
a2 − 4 +

2a4√
a2 − 4

and therefore
4a

√
a2 − 4 = 3(a2 − 4) + a2 = 4(a2 − 3)

This implies that a2(a2 − 4) = (a2 − 3)2 and so 2a2 = 9. Therefore, a2 = 9

2
, which after

simplification gives b2 = 6. So Thomas should choose the ellipse

x2

9/2
+

y2

6
= 1 ,

which has area A = πab = 3π
√
3.
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Before we tell Thomas to start constructing the nursery, we’d better check to see
whether he might get a better result by taking q = 0, which so far we have neglected.
This will give a2 = 4, and allowable values for b2 will be determined by the require-
ment that the “boundary” ellipse must contain the “cradles”: thus, the y value on the
boundary ellipse in the first quadrant must be no less than the y value on the cradle.
This gives

b2
(

1− x2

4

)

≥ 4
(

1− (x− 1)2
)

whenever 0 < x < 2, which simplifies to

b2 ≥ 16
(

1− 2

2 + x

)

.

If x approaches 2 then the right hand side continually increases and approaches a value
of 8. Therefore the minimum possible value for b2 is 8, and the minimum area for this
ellipse is 4π

√
2 . This is larger than our previous answer, which confirms that the ellipse

we found previously is the minimal solution.

NOW TRY Problem 1671.

Q1658 Alexander and Benjamin want to access their favourite computer game. Each
has to enter a password, which will be a string of letters a and b. If their words can be
converted to each other by substituting aab for bba or vice versa, more than once if nec-
essary, then the game app will agree that the passwords match and will let them access
the game. For example, aaaabab and bbabbba match because of the chain of substitutions

aaaabab ∼ aabbaab ∼ aabbbba ∼ bbabbba .

The twins enter their passwords and hit return. . . nothing happens! They have made
a typing error. Even worse, the backspace/delete keys have frozen!! The only hope is
to keep typing and see if the passwords match at some time in the future.

(a) Is this ever possible? That is, are there two non–matching passwords which can
be extended to give matching passwords?

(b) Suppose that after realising their mistake, Alexander and Benjamin are very care-
ful to type exactly the same in the future. Now is it possible for them to gain
access? In other words, are there two non–matching passwords which can be
extended in the same way to give matching passwords?

SOLUTION For any passwords u, v using letters a, b only, we write u ∼ v to denote
that u and v are related by a single substitution, and u ≈ v to denote that the passwords
match (that is, they are related by a chain of substitutions).

For part (a), suppose that the “first attempt” passwords are u and v, and that they
are extended by words w1 and w2. We want an example for which

u 6≈ v but uw1 ≈ vw2 .
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There are many examples like this. For instance, if u = aa and v = bb then it is clear
that u and v do not match, since they are not the same as they stand, and with only
two letters, no substitutions are possible. However, appending w1 = b and w2 = a
respectively gives aab and bba, which are matching passwords.

For part (b) we want
u 6≈ v but uw ≈ vw ;

unfortunately for Alexander and Benjamin, this is not possible. To prove this we shall
show that if u, v are any words, x is any single letter and ux ≈ vx, then u ≈ v. Starting
with uw ≈ vw and removing one letter at a time, this will eventually show that u ≈ v;
in other words, the “first attempt” passwords did match after all.

So, suppose that ux ≈ vx. This means that there is a chain of single substitutions

ux ∼ u1x1 ∼ u2x2 ∼ · · · ∼ unxn ∼ vx ,

where u1, u2, . . . , un are words and x1, x2, . . . , xn are single letters. We consider various
cases.

Firstly suppose that all the xk are equal to x. Since any single substitution changes
every letter it involves, none involves the letters xk; every substitution occurs within
the words uk. But this means that

u ∼ u1 ∼ u2 ∼ · · · ∼ un ∼ v

and therefore u ≈ v.

Next, suppose that none of the xk is equal to x. Since there are only two allowable
letters, they must all be equal to the other: call it y. Then we have

ux ∼ u1y ∼ u2y ∼ · · · ∼ uny ∼ vx .

Since a substitution has clearly been made at the end of ux, the last two letters of u must
be yy, and the preceding part of the word is unchanged by this substitution. Giving a
similar argument involving vx, we can write

u = u0yy , u1 = u0xx , un = v0xx , v = v0yy .

Now looking at the central part of the above chain,

u1y ∼ u2y ∼ · · · ∼ uny ;

therefore by our first case we have u1 ≈ un, that is,

u0xx ≈ v0xx .

The words u0x and v0x are clearly shorter than u and v, so we may assume by way of
induction that our main result applies to these words. Therefore u0xx ≈ v0xx implies
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u0x ≈ v0x, which in turn implies u0 ≈ v0; hence u0yy ≈ v0yy, that is, u ≈ v, and the
proof of this case is finished.

Finally we consider the case when the sequence of letters x1, x2, . . . , xn may consist
of any arrangement of xs and ys. The sequence may then be considered as a number
of xs, followed by a number of ys, followed by further xs, and so on; and the result
follows from the first two cases.

Q1659 Looking ahead a few years. . . On their first day at school, Alexander and
Benjamin are amazed to find that their class consists entirely of twins! – nine pairs of
twins, to be exact. The teacher wants to split the class up for three different activities:
7 of the children will do music, 6 will do reading and 5 will do painting. Each pair
of twins will do two different activities. In how many ways can the teacher allocate
children to activities?

SOLUTION First we decide which pairs do which activities; we shall allocate individ-
ual children later. For each pair, write down the initial of the activity they will not be
involved in. For example, If Alexander and Benjamin do music and painting, Chris-
tine and Denise do music and reading and so on, we write RP · · · . There will be two
pairs of twins who don’t do music, three who don’t do reading and four who don’t
do painting; so the number of ways to allocate activities is the same as the number of
ways to write down a nine–letter word consisting of two Ms, three Rs and four P s.
The number of ways to arrange 9 letters is 9! . However, interchanging the two Ms will
give the same word, and so we must divide by 2! ; similarly, we must divide by 3! on
account of the repeated Rs and by 4! on account of the repeated P s. The number of
words is therefore

9!

2! 3! 4!
= 1260 .

To complete the allocation, we must decide which of each pair of twins does which
activity. There are 2 choices for each pair, 29 altogether. Therefore the total number of
options available to the teacher is

9!

2! 3! 4!
29 = 1260× 512 = 645120 .

NOW TRY Problem 1672.

Q1660 Mindful of Alexander and Benjamin’s future mathematical education, Thomas
assigns a quadratic to each of them:

a(n) = 21n2 + 26n+ 8 and b(n) = 10n2 + 11n+ 3 .

Some time in the future, with careful study and hard work, the twins will be able to
show that for any value of the integer n, their expressions a(n) and b(n) will never have
any common factor greater than 1. Can you do it now?

SOLUTION First note that we have the factorisations

a(n) = (3n+ 2)(7n+ 4) and b(n) = (2n+ 1)(5n+ 3) .
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Now if a(n) and b(n) have a common factor greater than 1, they must have a common
prime factor p. Using the above factorisations, we have

p | 3n+ 2 or p | 7n+ 4 ; and p | 2n+ 1 or p | 5n + 3 .

If p is a factor of 3n+ 2 and of 2n+ 1, then it is a factor of

2(3n+ 2)− 3(2n+ 1) = 1 ,

which is impossible; and the other three possibilities are eliminated by similar argu-
ments. Therefore a(n) and b(n) have no common factor greater than 1.
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