Parabola Volume 58, Issue 1 (2022)

Inequalities related to foci of hyperbola Norihiro Someyama[1](#page-0-0)

1 Introduction

We consider the hyperbola H whose points (x, y) are determined by the equation

$$
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\tag{1}
$$

with $a, b > 0$ constant:

Since $(a, 0)$ is a solution to Equation [\(1\)](#page-0-1), it is a point of H and so a represents the distance between the origin O and each intersection point A between H and the x-axis. On the other hand, we can say that b represents how open H is. This is because the asymptotes of H are the lines given by

$$
y = \pm \frac{b}{a}x \,,
$$

as follows:

¹Norihiro Someyama is the Head Priest at Shin-yo-ji Buddhist Temple, Tokyo, Japan (philomatics@outlook.jp).

In other words, H opens and closes while approaching the asymptote as b varies, and so b appears *implicitly* in the graph of H as opposed to a which appears explicitly.

The hyperbola H has two so-called focal points, or foci; these are the points F and F ′ given by

$$
(\sqrt{a^2+b^2},0)
$$
 and $(-\sqrt{a^2+b^2},0)$, (2)

respectively or, in other words, $(\pm c, 0)$ where $c =$ √ $a^2 + b^2$:

The foci F and F' are determined by the values of a and b and thereby by the hyperbola H . However, the hyperbola (and thereby also a and b) is also determined by the foci; in particular, the hyperbola H consists exactly of all points P whose distances to F and to F' are the same except for a difference of $2a$. That is,

In fact, it turns out that the hyperbola H consists exactly of all points $P = (x, y)$ that satisfy Equation [\(1\)](#page-0-1). In other words, Equations [\(1\)](#page-0-1) and [\(3\)](#page-1-0) are two equivalent ways of expressing the points in H .

To see that Equation [\(1\)](#page-0-1) follows from Equation [\(3\)](#page-1-0), note that

$$
\pm 2a = |\mathrm{PF}| - |\mathrm{PF}'| = \sqrt{(x-c)^2 + y^2} - \sqrt{(x+c)^2 + y^2};
$$

i.e.,

$$
\sqrt{(x-c)^2 + y^2} = \sqrt{(x+c)^2 + y^2} \pm 2a.
$$

Squaring both sides of this equation gives

$$
(x-c)^{2} + y^{2} = (x+c)^{2} + y^{2} \pm 4a\sqrt{(x+c)^{2} + y^{2}} + 4a^{2},
$$

i.e.,

$$
\mp a\sqrt{(x+c)^2+y^2} = cx + a^2.
$$

By considering the squares of both sides of this equation, we have

$$
(c2 - a2)x2 - a2y2 = (c2 - a2)a2.
$$
 (4)

We can set $b^2 := c^2 - a^2$ since $c - a > 0$ and can represent Equation [\(4\)](#page-2-0) as

$$
b^2x^2 - a^2y^2 = a^2b^2.
$$

Hence, we obtain Equation [\(1\)](#page-0-1) by dividing both sides by a^2b^2 .

Reverse calculations show conversely that Equation [\(1\)](#page-0-1) implies Equation [\(3\)](#page-1-0).

2 Hyperbolas and ellipses

Before proceeding to the main part of the paper, it is interesting to compare hyperbolas and ellipses. Changing a sign in Equation [\(1\)](#page-0-1) for hyperbolas H gives the equation

$$
\mathcal{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.
$$
 (5)

The points $P = (x, y)$ satisfying this equation form the ellipse with a and b representing its largest and smallest radius, respectively, if it is assumed that $a \geq b$:

Like the hyperbola H , the ellipse $\mathcal E$ has foci F and F', the same but for a change of sign:

$$
(\sqrt{a^2 - b^2}, 0)
$$
 and $(-\sqrt{a^2 - b^2}, 0)$, (6)

respectively or, in other words, $(\pm c, 0)$ where $c =$ √ $a^2-b^2.$ Just like for the hyperbola, these foci also define the set of points in the ellipse \mathcal{E} . In particular, the points P in the ellipse are those whose sum of distances to F and to F' equal $2a$:

$$
|\mathrm{PF}| + |\mathrm{PF}'| = 2a. \tag{7}
$$

Note that this equation is obtained by changing a sign in Equation [\(3\)](#page-1-0).

Quadratic curves of the hyperbola, ellipse, etc. have many other properties; see textbooks on quadratic curves and analytic geometry, e.g. [\[2,](#page-4-0) [3\]](#page-4-1), for more details.

3 Main results and their proofs

The main result of this paper is a new inequality, given by Theorem [2](#page-3-0) below. To prove this result, another inequality is required.

Proposition 1. *Let* P *be any point on* H *and let* F *and* F ′ *be the foci of* H*. Then*

$$
|\mathrm{PF}| + |\mathrm{PF}'| \ge 2\sqrt{a^2 + b^2},\tag{8}
$$

with equality exactly when P *lies on the* x*-axis.*

Proof. By the Triangle Inequality, applied to the triangle \triangle PFF', and Equation [\(2\)](#page-1-1),

$$
|\mathrm{PF}| + |\mathrm{PF}'| \ge \overline{\mathrm{FF}'} = 2\sqrt{a^2 + b^2}.
$$

Equality occurs exactly when triangle \triangle PFF' is a line; i.e., when P is on the *x*-axis. \Box **Theorem 2.** *Let* P *be any point on* H *and let* F *and* F ′ *be the foci of* H*. Then*

$$
|\mathrm{PF}||\mathrm{PF}'| \ge b^2\,,\tag{9}
$$

with equality exactly when P *lies on the* x*-axis.*

Proof. By definition of hyperbolas, in particular Equation [\(3\)](#page-1-0),

$$
|PF||PF'| = |PF||PF'| + \frac{1}{4}(2a)^2 - a^2
$$

= |PF||PF'| + \frac{1}{4}(|PF| - |PF'|)² - a²
= \frac{1}{4}(|PF|^2 + |PF'|^2 + 2|PF||PF'|) - a^2
= \frac{1}{4}(|PF| + |PF'|)² - a².

By Proposition [1,](#page-3-1)

$$
|\text{PF}||\text{PF}'| \ge (a^2 + b^2) - a^2 = b^2,
$$

with equality exactly when P lies on the *x*-axis. \Box

It is interesting to note that Inequality (9) depends only on the parameter b and not on the parameter a.

References

- [1] N. Someyama and M.L.A. Borongan, New proofs of triangle inequalities, Journal of Ramanujan Society of Mathematics and Mathematical Sciences **7** (Dedicated to Prof. A.K. Agarwal's 70th Birth Anniversary, 2019), 85–92.
- [2] G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry (Ninth Edition), Addison Wesley, 1998.
- [3] K. Yano, Analytic Geometry (in Japanese), Asakura Publishing, 2004.