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The Multi-Butterfly Theorem
Martina Škorpilová1

1 Introduction

The Butterfly Theorem is an elegant result on chords of a circle. Its history dates back
to the early nineteenth century. A discovered family archive of William Wallace
(1768–1843) shows that the theorem was proven by this Scottish mathematician, as-
tronomer and inventor in 1805; see [2]. Moreover, William Wallace also dealt with
a more general statement for conics two years earlier.

According to [1], the appellation of the theorem was first publicised in [6] in 1944.

Various proofs as well as miscellaneous generalizations of the theorem have been
gradually published; see, for example, [1, 3, 5, 7]. We present a generalization that is
valid for n circles. It has already been proven for n = 2, the so-called Better Butterfly
Theorem, by Qiu Fawen and his students in 1997; see [4].

If we talk about chords, then we suppose that they are mutually distinct. We de-
note the distance between two points A and B by |AB| and the size of the angle ABC
by |∠ABC|.

2 The Butterfly Theorem

Now, we formulate the Butterfly Theorem.

Theorem 1 (The Butterfly Theorem).
Let k be a given circle, and let S be the midpoint of its any chord XY (see Figure 1). Let AB, CD
be two chords of k passing through S (points A, D lie in the same half-plane with edge XY ).
If U , V are the intersections of the chord XY with the chords AC, BD, respectively, then S is
also the midpoint of UV .

1Martina Škorpilová is a Lecturer at the Faculty of Mathematics and Physics at Charles University in
Prague.
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Figure 1.

3 The Multi-Butterfly Theorem

We now present the generalization of the theorem for n circles.

Theorem 2 (The Multi-Butterfly Theorem).
Let k1, k2, . . . , kn be concentric circles with the common center O (see Figure 2 for n = 4).
Assume, without loss of generality, that the inequality ri ≤ ri+1 holds for radii ri of ki,
i = 1, 2, . . . , n− 1. Let XY be any chord of kn, and let S be its midpoint. Let AnBn, CnDn be
chords of kn which pass through S (points An, Dn lie in the same half-plane with edge XY ).
Let U1, U2, . . . , Un−1, Un be the intersections of the chord XY with the chords A1C2, A2C3,
. . . , An−1Cn, AnC1, respectively, and, further, let V1, V2, . . . , Vn−1, Vn be the intersections of
the chord XY with the chords D1B2, D2B3, . . . , Dn−1Bn, DnB1. Then the following relation
holds:

1

|SU1|
+

1

|SU2|
+ · · ·+ 1

|SUn−1|
+

1

|SUn|
=

1

|SV1|
+

1

|SV2|
+ · · ·+ 1

|SVn−1|
+

1

|SVn|
.
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Figure 2.

Proof. We verify our statement by mathematical induction. Firstly, we show that the
theorem holds for n = 1; i.e., we prove the equality

1

|SU1|
=

1

|SV1|
. (1)

The equality (1) is clearly equivalent to |SU1| = |SV1|; i.e., the Butterfly Theorem. As
stated above, diverse proofs of this theorem have been published. We present a method
that is inspired by the proof of the already mentioned Better Butterfly Theorem; see [4].

Now, we denote the sizes of angles as shown in Figure 3:

|∠U1SA1| = |∠V1SB1| = α ,

|∠U1SC1| = |∠V1SD1| = β .
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Figure 3.

The relation (1) is equivalent to

sin (α + β)

|SU1|
=

sin (α + β)

|SV1|
. (2)

Further, let us have a look at the triangle SA1C1. Since its area is the sum of areas of
triangles SA1U1 and SC1U1, we get

1

2
|SA1| |SC1| sin (α + β) =

1

2
|SA1| |SU1| sinα +

1

2
|SC1| |SU1| sin β .

By multiplying this equality by the expression 2
|SA1||SC1||SU1| , we obtain

sin (α + β)

|SU1|
=

sinα

|SC1|
+

sin β

|SA1|
. (3)

Analogously, using triangle SD1B1, we have

sin (α + β)

|SV1|
=

sinα

|SD1|
+

sin β

|SB1|
.

The relation (2) is therefore valid if and only if

sinα

|SC1|
+

sin β

|SA1|
=

sinα

|SD1|
+

sin β

|SB1|
. (4)
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If the chord XY passes through the point O, then |SA1| = |SB1| = |SC1| = |SD1|.
Hence, (4) holds, which proves the Multi-Butterfly Theorem for n = 1.

If the chord XY does not pass through the point O, then we rearrange (4) as follows,
assuming without loss of generality that |SA1| < |SB1| and, thus, that |SD1| < |SC1|:(

1

|SA1|
− 1

|SB1|

)
sin β =

(
1

|SD1|
− 1

|SC1|

)
sinα . (5)

Using simple algebra, we obtain the equivalent equality

|SB1| − |SA1|
|SA1| |SB1|

sin β =
|SC1| − |SD1|
|SD1| |SC1|

sinα . (6)

Since inscribed angles subtended by the same arc are equal, we have by Figure 3
that |∠C1A1B1| = |∠C1D1B1| and |∠A1C1D1| = |∠A1B1D1|. The triangles A1C1S and
D1B1S are therefore similar. It follows that

|SA1|
|SD1|

=
|SC1|
|SB1|

or, equivalently,

|SA1| |SB1| = |SC1| |SD1| . (7)

We just proved the so-called Intersecting Chords Theorem: If two chords A1B1 and
C1D1 of a circle intersect in a point S, then the equality |SA1| |SB1| = |SC1| |SD1| holds.

Let O′ and O′′ denote the feet of the perpendiculars from the center O of k1 to the
chords A1B1 and C1D1, respectively. Then, α = |∠SOO′| and β = |∠SOO′′|. Since
the points O′ and O′′ are the midpoints of the chords A1B1 and C1D1, we see that
|SB1| − |SA1| = 2 |SO′| and |SC1| − |SD1| = 2 |SO′′|. Thus,

|SB1| − |SA1| = 2 |SO| sinα ,

|SC1| − |SD1| = 2 |SO| sin β . (8)

After substituting (7) and (8) into (6), and after subsequent re-arrangements, we obtain

2 |SO| sinα
|SC1| |SD1|

sin β =
2 |SO| sin β
|SD1| |SC1|

sinα .

This equality, which re-states (6), is clearly true. Since (6) is equivalent to (1), we have
proved the Multi-Butterfly Theorem for n = 1, i.e., the Butterfly Theorem.

Now, we assume that the statement holds for n = j, and we prove that it holds also
for n = j + 1; see Figure 4.
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Thus, we assume that the equality

1

|SU1|
+

1

|SU2|
+ · · ·+ 1

|SUj|
=

1

|SV1|
+

1

|SV2|
+ · · ·+ 1

|SVj|
(9)

holds for j circles. We want to show that (9) implies the identity

1

|SU1|
+

1

|SU2|
+ · · ·+ 1∣∣SŪj

∣∣ + 1∣∣SŪj+1

∣∣ = 1

|SV1|
+

1

|SV2|
+ · · ·+ 1∣∣SV̄j

∣∣ + 1∣∣SV̄j+1

∣∣ (10)

for j + 1 circles.

X YS

C

D

B

A

B

D

C

U V V
2 21 1

1
1

2

2

2

1

V

A

A2

D

D

j

C

C

B

B

1

UUU

k

k

k

k

1

2
j

j

A

j
j

j

j

j-1

-1

-1

-1

-1j
j

jjj-1 j-1V

O

αβ

αβ
α β

O'
O''

A

D

C

B

k

j

j

j

j+1

+1

+1

+1

Uj jU +1 VjVj+1

j +1

Figure 4.

6



Note that there are the points Uj , Vj in (9), while there are the points Ūj , V̄j in (10).
For n = j + 1, we have the chord AjCj+1 instead of the chord AjC1, and, analogously,
we have the chord DjBj+1 instead of the chord DjB1. We denote the intersections of
the chord XY with the chords AjCj+1, DjBj+1, Aj+1C1, Dj+1B1 by Ūj , V̄j , Ūj+1, V̄j+1,
respectively.

Further, if we define

G =
1

|SU1|
+

1

|SU2|
+ · · ·+ 1

|SUj−1|
,

H =
1

|SV1|
+

1

|SV2|
+ · · ·+ 1

|SVj−1|
,

then we can rewrite (9) and (10) as

G−H =
1

|SVj|
− 1

|SUj|
(induction hypothesis)

and G−H =
1∣∣SV̄j

∣∣ + 1∣∣SV̄j+1

∣∣ − 1∣∣SŪj

∣∣ − 1∣∣SŪj+1

∣∣ .
Thus, it suffices to show that

1

|SVj|
− 1

|SUj|
=

1∣∣SV̄j

∣∣ + 1∣∣SV̄j+1

∣∣ − 1∣∣SŪj

∣∣ − 1∣∣SŪj+1

∣∣ , (11)

or, equivalently,

sin (α+β)

|SVj|
− sin (α+β)

|SUj|
=

sin (α+β)∣∣SV̄j

∣∣ +
sin (α+β)∣∣SV̄j+1

∣∣ − sin (α+β)∣∣SŪj

∣∣ − sin (α+β)∣∣SŪj+1

∣∣ . (12)

By similar derivations to that of (3) for the triangle SA1C1, we can obtain the following
relations, using triangles SDjB1, SAjC1, SDjBj+1, SDj+1B1, SAjCj+1, SAj+1C1:

sin (α + β)

|SVj|
=

sinα

|SDj|
+

sin β

|SB1|
,

sin (α + β)

|SUj|
=

sinα

|SC1|
+

sin β

|SAj|
,

sin (α + β)∣∣SV̄j

∣∣ =
sinα

|SDj|
+

sin β

|SBj+1|
,

sin (α + β)∣∣SV̄j+1

∣∣ =
sinα

|SDj+1|
+

sin β

|SB1|
,

sin (α + β)∣∣SŪj

∣∣ =
sinα

|SCj+1|
+

sin β

|SAj|
,

sin (α + β)∣∣SŪj+1

∣∣ =
sinα

|SC1|
+

sin β

|SAj+1|
.
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Hence, we can rewrite (12) as

sinα

|SDj|
+

sin β

|SB1|
− sinα

|SC1|
− sin β

|SAj|

=
sinα

|SDj|
+

sin β

|SBj+1|
+

sinα

|SDj+1|
+

sin β

|SB1|
− sinα

|SCj+1|
− sin β

|SAj|
− sinα

|SC1|
− sin β

|SAj+1|
,

from which we have the identity(
1

|SAj+1|
− 1

|SBj+1|

)
sin β =

(
1

|SDj+1|
− 1

|SCj+1|

)
sinα ,

or, equivalently,

|SBj+1| − |SAj+1|
|SAj+1| |SBj+1|

sin β =
|SCj+1| − |SDj+1|
|SDj+1| |SCj+1|

sinα . (13)

Using the Intersecting Chords Theorem, we have |SAj+1| |SBj+1| = |SCj+1| |SDj+1|.
And because

|SBj+1| − |SAj+1| = 2 |SO′| = 2 |SO| sinα ,

|SCj+1| − |SDj+1| = 2 |SO′′| = 2 |SO| sin β ,

we obtain, by (13),

2 |SO| sinα
|SCj+1| |SDj+1|

sin β =
2 |SO| sin β

|SCj+1| |SDj+1|
sinα .

Clearly, this last equality is true. Hence, the equality (11) is true.
The induction hypothesis for j circles thus implies the validity of the Multi-Butterfly

Theorem for j + 1 circles. This completes the proof for all natural numbers n. 2
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