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The Multi-Butterfly Theorem

Martina Skorpilova'

1 Introduction

The Butterfly Theorem is an elegant result on chords of a circle. Its history dates back
to the early nineteenth century. A discovered family archive of William Wallace
(1768-1843) shows that the theorem was proven by this Scottish mathematician, as-
tronomer and inventor in 1805; see [2]. Moreover, William Wallace also dealt with
a more general statement for conics two years earlier.

According to [1], the appellation of the theorem was first publicised in [6] in 1944.

Various proofs as well as miscellaneous generalizations of the theorem have been
gradually published; see, for example, [1, 3, 5, 7]. We present a generalization that is
valid for n circles. It has already been proven for n = 2, the so-called Better Butterfly
Theorem, by Qiu Fawen and his students in 1997; see [4].

If we talk about chords, then we suppose that they are mutually distinct. We de-
note the distance between two points A and B by |AB| and the size of the angle ABC
by |ZABC.

2 The Butterfly Theorem

Now, we formulate the Butterfly Theorem.

Theorem 1 (The Butterfly Theorem).

Let k be a given circle, and let S be the midpoint of its any chord XY (see Figure 1). Let AB, CD
be two chords of k passing through S (points A, D lie in the same half-plane with edge XY').
If U, V are the intersections of the chord XY with the chords AC, BD, respectively, then S is
also the midpoint of UV .
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3 The Multi-Butterfly Theorem

We now present the generalization of the theorem for n circles.

Theorem 2 (The Multi-Butterfly Theorem).
Let ky, ko, ..., ky, be concentric circles with the common center O (see Figure 2 for n = 4).
Assume, without loss of generality, that the inequality r; < r;4y holds for radii r; of k;,
i=1,2,...,n—1. Let XY be any chord of k,, and let S be its midpoint. Let A, B,,, C,D,, be
chords of k,, which pass through S (points A,,, D, lie in the same half-plane with edge XY').
Let Uy, Us, ..., U,_1,U, be the intersections of the chord XY with the chords A;Cs, AsCs,
oo, An Gy, A, Ch, respectively, and, further, let Vi, Vs, ..., V,,_1, V,, be the intersections of
the chord XY with the chords DBy, D3 Bs, ..., D,_1B,, D,B;. Then the following relation
holds:

1 1 1 1 1 1 1 1

ettt + = + ot - .
[SUL| STy [SUn—1| — |SU| - [SVA]  |SVA [SVaal — [SVa]




Figure 2.

Proof. We verify our statement by mathematical induction. Firstly, we show that the
theorem holds for n = 1; i.e., we prove the equality

11
|SU|  |SW]

: (1)

The equality (1) is clearly equivalent to |SU;| = |SV}]; i.e., the Butterfly Theorem. As

stated above, diverse proofs of this theorem have been published. We present a method

that is inspired by the proof of the already mentioned Better Butterfly Theorem; see [4].
Now, we denote the sizes of angles as shown in Figure 3:

‘4U15A1| = |Z‘/1;S’Bl’ =,
|ZULSCy| = [£ViSDy| = 3.



Figure 3.

The relation (1) is equivalent to

sin(a+8)  sin(a+ B)

- 2
ST SV @

Further, let us have a look at the triangle SA;C;. Since its area is the sum of areas of
triangles SA,U; and SC,U;, we get

1 1 1
5 |SA1| |SCl| sin (Oé + B) = 5 ‘SAl‘ ‘SUly sin o + 5 \SC&] ’SUl‘ sinﬁ .

By multiplying this equality by the expression Wélusmv we obtain

sin(a+ ) sina  sinf
= + ) 3
AR CARNEZN o

Analogously, using triangle SD, B, we have

sin(a+ ) sina  sinf

SVi|  ISDy|  |SBi|

The relation (2) is therefore valid if and only if

sina sinfl  sina sin 3

+ = + : 4
511 T ISA ~ 1SDy] T B, @
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If the chord XY passes through the point O, then |SA;| = |[SB,| = |[SCi| = |SD;|.
Hence, (4) holds, which proves the Multi-Butterfly Theorem for n = 1.

If the chord XY does not pass through the point O, then we rearrange (4) as follows,
assuming without loss of generality that |SA;| < |SB;| and, thus, that |SD;| < |SC4|:

1 1 . 1 1 .
(rSAlr - \531!> s = (\sm - |501\) sinar. ©)

Using simple algebra, we obtain the equivalent equality

[SBi| — |54

_ |SG[ - 15D,
|SA[|SB|

sin 8 = SDI1SCH] sina. (6)

Since inscribed angles subtended by the same arc are equal, we have by Figure 3
that \LC’lAlBﬂ = |éClDlBl| and |4A101D1| = ‘éAlBlDll The triangles AlCIS and
DB, S are therefore similar. It follows that

|S A _ |SCh|
[SDi| - [SBi]
or, equivalently,
|SAL[SB1| = |SCi|[SDs] - (7)

We just proved the so-called Intersecting Chords Theorem: If two chords A;B; and
C1 D, of a circle intersect in a point S, then the equality |SA;| |SB:| = |SCy| |SD;| holds.

Let O’ and O” denote the feet of the perpendiculars from the center O of k; to the
chords A, B; and C;D;, respectively. Then, o = |Z500’| and g = |£500"|. Since
the points O’ and O” are the midpoints of the chords A,B; and C;D;, we see that
|SBy| — |SA| =2|SO'| and |SC,| — |SD;| = 2|SO"|. Thus,

|SBy| —|SA;| =2|50|sina,
|SCy| — |SDy| =2|SO|sin . (8)

After substituting (7) and (8) into (6), and after subsequent re-arrangements, we obtain

2[SO|sina

in = 2[SO[sinf .
[SCL[ S D]

- SI1 ¢v .

|SD:[|SCh|
This equality, which re-states (6), is clearly true. Since (6) is equivalent to (1), we have
proved the Multi-Butterfly Theorem for n = 1, i.e., the Butterfly Theorem.

Now, we assume that the statement holds for n = j, and we prove that it holds also
for n = j + 1; see Figure 4.



Thus, we assume that the equality
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[STL| ~ [SUs| |SU;| - |SVa] - [SVa| 1SVl
holds for j circles. We want to show that (9) implies the identity
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Note that there are the points U;, V; in (9), while there are the points U;, V; in (10).
For n = j + 1, we have the chord A;C};; instead of the chord A;C}, and, analogously,
we have the chord D;B;,; instead of the chord D;B;. We denote the intersections of
the chord XY with the chords A;C;,1, D;Bjy1, A;j11C1, D1 By by U;, Vi, Uia, Vi,
respectively.

Further, if we define

G= 4 L ]
|SUL| — |SUs| |SU; 1|’
1 1 1

H= ottt
EARRETA SV,

then we can rewrite (9) and (10) as

1 1
G — H = —— — ——(induction hypothesis)
SVi ~ ISTj] P
and G- H ! ! ! !

= — + — — — — — .
[SVi|  |SVia| ST, [T
Thus, it suffices to show that

L1111
[SVil ISUL SV SVl [ST;] |ST

, (11)

or, equivalently,

sin (a+8)  sin (a+f) _ sin (a+p) N sin (a+8)  sin(a+pB)  sin(a+p)
1SV 1SUj| |SV;] |SVja] |ST;| |STUj|

(12)
By similar derivations to that of (3) for the triangle SA,C';, we can obtain the following
relations, using triangles SD;B,, SA;Cy, SD;Bj11, SDj11B1, SA;Cjt1, SA;11Ch:

sin(a+ ) sina  sinf

[SV;| - [SD;l  |SBil’
sin (a 4 3) _ sina N sin 3
|SUj| |SCh| |54,
sin (a4 f3)  sina sin /3
1SV;| 1SD;| 1Bl
sin(a+f3)  sina sin /3
1SVia|  1SDjal - 1SBy|”
sin (a4 8)  sina sin /3
1SU;| 1SCjl i |SA;|”
sin (a4 f3)  sina sin /3
1SUja|  1SChl - [SAjnl



Hence, we can rewrite (12) as

sin « n sin 3 sin « sin 3
|SD;| - [SBi|  [SCY  |SA4
sin «v sin 3 sin « sin 3 sin « sinff  sina sin 3

e —'— — — —_ _ ,
1SD;|  |SBjsal  [SDjial ~ |ISBi|  [SCia|  [SA;] [SCi| [SAj4

from which we have the identity

— S1n = — sin o,
|SAje1|  |SBj] 1SDja|  [SCjl

or, equivalently,

SBja| = [SAja| ., 18Ci| —|SDja| .

infB = sin o . 13
SA15Bn] P = ISD,m 150, 13)

Using the Intersecting Chords Theorem, we have |SA;1||SBji1| = |SCji1|[SDj1].
And because

|SBj+1| — |SA]‘+1| =2 |SO/| =2 |SO|sina,
‘SCj+1| - |SD]'+1’ =2 |SOH‘ =2 |SO| sinﬂ,

we obtain, by (13),

21S0|sin«
1SCjal[SDj1a]

21SO|sin g

sin 8 = S
¥ = 18C, 15D,

mao.

Clearly, this last equality is true. Hence, the equality (11) is true.
The induction hypothesis for j circles thus implies the validity of the Multi-Butterfly
Theorem for j + 1 circles. This completes the proof for all natural numbers n. O

References

[1] L. Bankoff, The metamorphosis of the Butterfly Problem, Math. Mag. 60 (1987),
195-210.

[2] A.Bogomolny, Interactive Mathematics Miscellany and Puzzles: William Wallace
Proof of the Butterfly Theorem,

https://www.cut-the-knot.org/pythagoras/WilliamWallaceButterfly.shtml,

last accessed on 2022-03-09.

[3] A. Bogomolny, Interactive Mathematics Miscellany and Puzzles: The Butterfly
Theorem, https://www.cut-the-knot.org/pythagoras/Butterfly.shtml,
last accessed on 2022-03-09.


https://www.cut-the-knot.org/pythagoras/WilliamWallaceButterfly.shtml
https://www.cut-the-knot.org/pythagoras/Butterfly.shtml

[4] A.Bogomolny, Interactive Mathematics Miscellany and Puzzles: A Better Butter-
fly Theorem,

https://www.cut-the-knot.org/pythagoras/BetterButterfly.shtml,
last accessed on 2022-03-09.

[5] M.S. Klamkin, An extension of the Butterfly Problem, Math. Mag. 38 (1965),
206-208.

[6] J. Rosenbaum, W.E. Buker, R. Steinberg, E.P. Starke and ]J.H. Butchert, Solution of
Problem E 571, Amer. Math. Monthly 51 (1944), 91.

[7] A. Sliepcevi¢, A new generalization of the Butterfly Theorem, J. Geom. Graph. 6
(2002), 61-68.


https://www.cut-the-knot.org/pythagoras/BetterButterfly.shtml

	Introduction
	The Butterfly Theorem
	The Multi-Butterfly Theorem

