Parabola Volume 58, Issue 1 (2022)

The Multi-Butterfly Theorem

Martina Škorpilová^{[1](#page-0-0)}

1 Introduction

The Butterfly Theorem is an elegant result on chords of a circle. Its history dates back to the early nineteenth century. A discovered family archive of William Wallace (1768–1843) shows that the theorem was proven by this Scottish mathematician, astronomer and inventor in 1805; see [\[2\]](#page-7-0). Moreover, William Wallace also dealt with a more general statement for conics two years earlier.

According to [\[1\]](#page-7-1), the appellation of the theorem was first publicised in [\[6\]](#page-8-0) in 1944.

Various proofs as well as miscellaneous generalizations of the theorem have been gradually published; see, for example, [\[1,](#page-7-1) [3,](#page-7-2) [5,](#page-8-1) [7\]](#page-8-2). We present a generalization that is valid for n circles. It has already been proven for n = 2, the so-called *Better Butterfly Theorem*, by Qiu Fawen and his students in 1997; see [\[4\]](#page-8-3).

If we talk about chords, then we suppose that they are mutually distinct. We denote the distance between two points A and B by $|AB|$ and the size of the angle ABC by $|\angle ABC|$.

2 The Butterfly Theorem

Now, we formulate the Butterfly Theorem.

Theorem 1 (The Butterfly Theorem)**.**

Let k *be a given circle, and let* S *be the midpoint of its any chord* XY *(see Figure 1). Let* AB*,* CD *be two chords of* k *passing through* S *(points* A*,* D *lie in the same half-plane with edge* XY *). If* U*,* V *are the intersections of the chord* XY *with the chords* AC*,* BD*, respectively, then* S *is also the midpoint of* UV *.*

¹Martina Škorpilová is a Lecturer at the Faculty of Mathematics and Physics at Charles University in Prague.

Figure 1.

3 The Multi-Butterfly Theorem

We now present the generalization of the theorem for n circles.

Theorem 2 (The Multi-Butterfly Theorem)**.**

Let k_1, k_2, \ldots, k_n be concentric circles with the common center O (see Figure 2 for $n = 4$). Assume, without loss of generality, that the inequality $r_i~\leq~r_{i+1}$ holds for radii r_i of k_i , $i = 1, 2, \ldots, n - 1$. Let XY be any chord of k_n , and let S be its midpoint. Let $A_n B_n$, $C_n D_n$ be *chords of* k_n *which pass through S* (points A_n , D_n *lie in the same half-plane with edge XY*). *Let* $U_1, U_2, \ldots, U_{n-1}, U_n$ *be the intersections of the chord XY with the chords* A_1C_2 , A_2C_3 , \ldots , $A_{n-1}C_n$, A_nC_1 , respectively, and, further, let V_1 , V_2 , \ldots , V_{n-1} , V_n be the intersections of *the chord XY with the chords* D_1B_2 , D_2B_3 , ..., $D_{n-1}B_n$, D_nB_1 . Then the following relation *holds:*

$$
\frac{1}{|SU_1|} + \frac{1}{|SU_2|} + \cdots + \frac{1}{|SU_{n-1}|} + \frac{1}{|SU_n|} = \frac{1}{|SV_1|} + \frac{1}{|SV_2|} + \cdots + \frac{1}{|SV_{n-1}|} + \frac{1}{|SV_n|}.
$$

Figure 2.

Proof. We verify our statement by mathematical induction. Firstly, we show that the theorem holds for $n = 1$; i.e., we prove the equality

$$
\frac{1}{|SU_1|} = \frac{1}{|SV_1|} \,. \tag{1}
$$

The equality [\(1\)](#page-2-0) is clearly equivalent to $|SU_1| = |SV_1|$; i.e., the Butterfly Theorem. As stated above, diverse proofs of this theorem have been published. We present a method that is inspired by the proof of the already mentioned Better Butterfly Theorem; see [\[4\]](#page-8-3).

Now, we denote the sizes of angles as shown in Figure 3:

$$
\begin{aligned} \left| \angle U_1 SA_1 \right| &= \left| \angle V_1 SB_1 \right| = \alpha \,, \\ \left| \angle U_1 SC_1 \right| &= \left| \angle V_1 SD_1 \right| = \beta \,. \end{aligned}
$$

Figure 3.

The relation [\(1\)](#page-2-0) is equivalent to

'

$$
\frac{\sin\left(\alpha+\beta\right)}{|SU_1|} = \frac{\sin\left(\alpha+\beta\right)}{|SU_1|}.
$$
 (2)

Further, let us have a look at the triangle SA_1C_1 . Since its area is the sum of areas of triangles $\mathit{SA}_1\mathit{U}_1$ and $\mathit{SC}_1\mathit{U}_1$, we get

$$
\frac{1}{2} |SA_1| |SC_1| \sin (\alpha + \beta) = \frac{1}{2} |SA_1| |SU_1| \sin \alpha + \frac{1}{2} |SC_1| |SU_1| \sin \beta.
$$

By multiplying this equality by the expression $\frac{2}{|SA_1||SC_1||SU_1|}$, we obtain

$$
\frac{\sin\left(\alpha+\beta\right)}{|SU_1|} = \frac{\sin\alpha}{|SC_1|} + \frac{\sin\beta}{|SA_1|}.
$$
\n(3)

Analogously, using triangle SD_1B_1 , we have

$$
\frac{\sin(\alpha + \beta)}{|SV_1|} = \frac{\sin \alpha}{|SD_1|} + \frac{\sin \beta}{|SB_1|}.
$$

The relation [\(2\)](#page-3-0) is therefore valid if and only if

$$
\frac{\sin\alpha}{|SC_1|} + \frac{\sin\beta}{|SA_1|} = \frac{\sin\alpha}{|SD_1|} + \frac{\sin\beta}{|SB_1|}.
$$
\n(4)

If the chord XY passes through the point O, then $|SA_1| = |SB_1| = |SC_1| = |SD_1|$. Hence, [\(4\)](#page-3-1) holds, which proves the *Multi-Butterfly Theorem* for $n = 1$.

If the chord XY does not pass through the point O, then we rearrange [\(4\)](#page-3-1) as follows, assuming without loss of generality that $|SA_1| < |SB_1|$ and, thus, that $|SD_1| < |SC_1|$:

$$
\left(\frac{1}{|SA_1|} - \frac{1}{|SB_1|}\right) \sin \beta = \left(\frac{1}{|SD_1|} - \frac{1}{|SC_1|}\right) \sin \alpha.
$$
 (5)

Using simple algebra, we obtain the equivalent equality

$$
\frac{|SB_1| - |SA_1|}{|SA_1| |SB_1|} \sin \beta = \frac{|SC_1| - |SD_1|}{|SD_1| |SC_1|} \sin \alpha.
$$
 (6)

Since inscribed angles subtended by the same arc are equal, we have by Figure 3 that $|\angle C_1A_1B_1| = |\angle C_1D_1B_1|$ and $|\angle A_1C_1D_1| = |\angle A_1B_1D_1|$. The triangles A_1C_1S and D_1B_1S are therefore similar. It follows that

$$
\frac{|SA_1|}{|SD_1|} = \frac{|SC_1|}{|SB_1|}
$$

or, equivalently,

$$
|SA_1| |SB_1| = |SC_1| |SD_1| . \tag{7}
$$

We just proved the so-called *Intersecting Chords Theorem*: If two chords A_1B_1 and C_1D_1 of a circle intersect in a point S, then the equality $|SA_1||SB_1| = |SC_1||SD_1|$ holds.

Let O' and O'' denote the feet of the perpendiculars from the center O of k_1 to the chords A_1B_1 and C_1D_1 , respectively. Then, $\alpha = |\angle SOO'|$ and $\beta = |\angle SOO''|$. Since the points O' and O'' are the midpoints of the chords A_1B_1 and C_1D_1 , we see that $|SB_1| - |SA_1| = 2 |SO'|$ and $|SC_1| - |SD_1| = 2 |SO''|$. Thus,

$$
|SB_1| - |SA_1| = 2 |SO| \sin \alpha ,
$$

\n
$$
|SC_1| - |SD_1| = 2 |SO| \sin \beta .
$$
 (8)

After substituting [\(7\)](#page-4-0) and [\(8\)](#page-4-1) into [\(6\)](#page-4-2), and after subsequent re-arrangements, we obtain

$$
\frac{2\left|SO\right|\sin\alpha}{\left|SC_1\right|\left|SD_1\right|}\sin\beta = \frac{2\left|SO\right|\sin\beta}{\left|SD_1\right|\left|SC_1\right|}\sin\alpha.
$$

This equality, which re-states [\(6\)](#page-4-2), is clearly true. Since [\(6\)](#page-4-2) is equivalent to [\(1\)](#page-2-0), we have proved the Multi-Butterfly Theorem for $n = 1$, i.e., the Butterfly Theorem.

Now, we assume that the statement holds for $n = j$, and we prove that it holds also for $n = j + 1$; see Figure 4.

Thus, we assume that the equality

$$
\frac{1}{|SU_1|} + \frac{1}{|SU_2|} + \dots + \frac{1}{|SU_j|} = \frac{1}{|SV_1|} + \frac{1}{|SV_2|} + \dots + \frac{1}{|SV_j|}
$$
(9)

holds for j circles. We want to show that (9) implies the identity

$$
\frac{1}{|SU_1|} + \frac{1}{|SU_2|} + \dots + \frac{1}{|S\bar{U}_j|} + \frac{1}{|S\bar{U}_{j+1}|} = \frac{1}{|SV_1|} + \frac{1}{|SV_2|} + \dots + \frac{1}{|S\bar{V}_j|} + \frac{1}{|S\bar{V}_{j+1}|} \tag{10}
$$

for $j + 1$ circles.

Figure 4.

Note that there are the points U_j , V_j in [\(9\)](#page-5-0), while there are the points \bar{U}_j , \bar{V}_j in [\(10\)](#page-5-1). For $n = j + 1$, we have the chord $A_j C_{j+1}$ instead of the chord $A_j C_1$, and, analogously, we have the chord D_jB_{j+1} instead of the chord D_jB_1 . We denote the intersections of the chord XY with the chords $A_j C_{j+1}$, $D_j B_{j+1}$, $A_{j+1} C_1$, $D_{j+1} B_1$ by \bar{U}_j , \bar{V}_j , \bar{U}_{j+1} , \bar{V}_{j+1} , respectively.

Further, if we define

$$
G = \frac{1}{|SU_1|} + \frac{1}{|SU_2|} + \dots + \frac{1}{|SU_{j-1}|},
$$

$$
H = \frac{1}{|SV_1|} + \frac{1}{|SV_2|} + \dots + \frac{1}{|SV_{j-1}|},
$$

then we can rewrite (9) and (10) as

$$
G - H = \frac{1}{|SV_j|} - \frac{1}{|SU_j|} \text{(induction hypothesis)}
$$

and
$$
G - H = \frac{1}{|S\bar{V}_j|} + \frac{1}{|S\bar{V}_{j+1}|} - \frac{1}{|S\bar{U}_j|} - \frac{1}{|S\bar{U}_{j+1}|}.
$$

Thus, it suffices to show that

$$
\frac{1}{|SV_j|} - \frac{1}{|SU_j|} = \frac{1}{|S\bar{V}_j|} + \frac{1}{|S\bar{V}_{j+1}|} - \frac{1}{|S\bar{U}_j|} - \frac{1}{|S\bar{U}_{j+1}|},
$$
\n(11)

or, equivalently,

$$
\frac{\sin\left(\alpha+\beta\right)}{|SV_j|} - \frac{\sin\left(\alpha+\beta\right)}{|SU_j|} = \frac{\sin\left(\alpha+\beta\right)}{|SV_j|} + \frac{\sin\left(\alpha+\beta\right)}{|SV_{j+1}|} - \frac{\sin\left(\alpha+\beta\right)}{|SU_j|} - \frac{\sin\left(\alpha+\beta\right)}{|SU_{j+1}|}.
$$
 (12)

By similar derivations to that of [\(3\)](#page-3-2) for the triangle $SA₁C₁$, we can obtain the following relations, using triangles SD_jB_1 , SA_jC_1 , SD_jB_{j+1} , $SD_{j+1}B_1$, SA_jC_{j+1} , $SA_{j+1}C_1$:

$$
\frac{\sin (\alpha + \beta)}{|SV_j|} = \frac{\sin \alpha}{|SD_j|} + \frac{\sin \beta}{|SB_1|},
$$

\n
$$
\frac{\sin (\alpha + \beta)}{|SU_j|} = \frac{\sin \alpha}{|SC_1|} + \frac{\sin \beta}{|SA_j|},
$$

\n
$$
\frac{\sin (\alpha + \beta)}{|SV_j|} = \frac{\sin \alpha}{|SD_j|} + \frac{\sin \beta}{|SB_{j+1}|},
$$

\n
$$
\frac{\sin (\alpha + \beta)}{|SV_{j+1}|} = \frac{\sin \alpha}{|SD_{j+1}|} + \frac{\sin \beta}{|SB_1|},
$$

\n
$$
\frac{\sin (\alpha + \beta)}{|SU_j|} = \frac{\sin \alpha}{|SC_{j+1}|} + \frac{\sin \beta}{|SA_j|},
$$

\n
$$
\frac{\sin (\alpha + \beta)}{|SU_{j+1}|} = \frac{\sin \alpha}{|SC_1|} + \frac{\sin \beta}{|SA_{j+1}|}.
$$

Hence, we can rewrite [\(12\)](#page-6-0) as

$$
\frac{\sin \alpha}{|SD_j|} + \frac{\sin \beta}{|SB_1|} - \frac{\sin \alpha}{|SC_1|} - \frac{\sin \beta}{|SA_j|} \n= \frac{\sin \alpha}{|SD_j|} + \frac{\sin \beta}{|SB_{j+1}|} + \frac{\sin \alpha}{|SD_{j+1}|} + \frac{\sin \beta}{|SB_1|} - \frac{\sin \alpha}{|SC_{j+1}|} - \frac{\sin \beta}{|SA_j|} - \frac{\sin \alpha}{|SC_1|} - \frac{\sin \beta}{|SA_{j+1}|},
$$

from which we have the identity

$$
\left(\frac{1}{|SA_{j+1}|} - \frac{1}{|SB_{j+1}|}\right) \sin \beta = \left(\frac{1}{|SD_{j+1}|} - \frac{1}{|SC_{j+1}|}\right) \sin \alpha,
$$

or, equivalently,

$$
\frac{|SB_{j+1}| - |SA_{j+1}|}{|SA_{j+1}| |SB_{j+1}|} \sin \beta = \frac{|SC_{j+1}| - |SD_{j+1}|}{|SD_{j+1}| |SC_{j+1}|} \sin \alpha.
$$
 (13)

Using the Intersecting Chords Theorem, we have $|SA_{i+1}| |SB_{i+1}| = |SC_{i+1}| |SD_{i+1}|$. And because

$$
|SB_{j+1}| - |SA_{j+1}| = 2 |SO'| = 2 |SO| \sin \alpha ,
$$

\n
$$
|SC_{j+1}| - |SD_{j+1}| = 2 |SO''| = 2 |SO| \sin \beta ,
$$

we obtain, by [\(13\)](#page-7-3),

$$
\frac{2|SO|\sin\alpha}{|SC_{j+1}||SD_{j+1}|}\sin\beta = \frac{2|SO|\sin\beta}{|SC_{j+1}||SD_{j+1}|}\sin\alpha.
$$

Clearly, this last equality is true. Hence, the equality [\(11\)](#page-6-1) is true.

The induction hypothesis for j circles thus implies the validity of the Multi-Butterfly Theorem for $j + 1$ circles. This completes the proof for all natural numbers n . \Box

References

- [1] L. Bankoff, The metamorphosis of the Butterfly Problem, Math. Mag. **60** (1987), 195–210.
- [2] A. Bogomolny, Interactive Mathematics Miscellany and Puzzles: William Wallace Proof of the Butterfly Theorem, <https://www.cut-the-knot.org/pythagoras/WilliamWallaceButterfly.shtml>, last accessed on 2022-03-09.
- [3] A. Bogomolny, Interactive Mathematics Miscellany and Puzzles: The Butterfly Theorem, <https://www.cut-the-knot.org/pythagoras/Butterfly.shtml>, last accessed on 2022-03-09.

[4] A. Bogomolny, Interactive Mathematics Miscellany and Puzzles: A Better Butterfly Theorem,

<https://www.cut-the-knot.org/pythagoras/BetterButterfly.shtml>, last accessed on 2022-03-09.

- [5] M.S. Klamkin, An extension of the Butterfly Problem, Math. Mag. **38** (1965), 206–208.
- [6] J. Rosenbaum, W.E. Buker, R. Steinberg, E.P. Starke and J.H. Butchert, Solution of Problem E 571, Amer. Math. Monthly **51** (1944), 91.
- [7] A. Sliepčević, A new generalization of the Butterfly Theorem, J. Geom. Graph. **6** (2002), 61–68.