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Magnetic field strength below a three-phase power line
Rachael Wen'

1 Introduction

Hello, my name is Rachael. The topic of my paper is magnetic fields, which is a kind of
invisible radiation that is emitted by all electrical devices. In everyday life, cell phones,
microwaves, computers, televisions and power lines all emit magnetic fields. Many
may view magnetic fields with hesitance because they believe that magnetic fields are
harmful to human health. So far, there is no published, large-scale and widely-accepted
research showing the safe level of magnetic field exposure for humans. Per [1], only a
handful of developed countries have legal requirements limiting the strength of mag-
netic fields: France requires the exposure of children to magnetic fields of 1 uT to be
avoided; Germany requires the magnetic fields emitted from facilities greater than 1
kV to be minimized; Luxembourg recommends that the construction of new living
spaces in the immediate vicinity of overhead power lines to be avoided. In some de-
veloped countries, such as Australia, India and the United States, there are no laws
limiting the level of magnetic field a device can emit. This means that people can be
exposed to limitless levels of magnetic fields. The ambiguity surrounding the effects
of magnetic fields may be what makes the subject so frightening. Until there is more
definitive research, people may want to limit their exposure to magnetic fields. Some
ways to limit exposure include using a Bluetooth headset, watching less television and
standing away from microwaves. These are all personal ways to reduce magnetic field
exposure, and can be relatively easily implemented. On the other hand, one source
of magnetic field that people will have a tough time avoiding is the ubiquitous power
line. Unlike with electrical appliances, you cannot just turn off a power line. Except
during a power outage, power lines are always on, meaning that power lines are a
near constant source of magnetic fields. Most people do not seem too concerned about
the magnetic field emitted from distribution power lines. Distribution power lines are
the wires that are usually supported 10 meter or so above the ground on wood poles.
But people who live near transmission power lines seem to have an increased con-
cern about magnetic fields. Transmission power lines, shown in Figure 1, are the wires
that are supported on steel towers that are usually 20m to 50 m tall. Compared to
distribution power lines, transmission power lines usually carry a lot more electrical
current and, therefore, has the potential to create much stronger magnetic fields. Out
of concern for the public, I decided to calculate the strength of the magnetic field that
a person may experience if he or she were to stand below a set of transmission power
lines. My paper only uses algebra and trigonometry.

1Rachael Wen is a senior student at San Marino High School, San Marino, California, USA.

1



Figure 1: A 3-phase transmission circuit. Source: Wikimedia Commons


https://commons.wikimedia.org/wiki/File:Img0289SCE_500kV_lines_close.JPG

2 Background Literature

Before I tried to solve this problem on my own, I searched the Internet. I found three re-
search papers that described how to calculate the magnetic field strength below power
lines. The three papers are [2], [3] and [4]. Strangely, [2] and [4] share two authors and
[3] and [4] also share two authors. So, it may be that these three papers are, in fact, one
paper published three times. The paper that I focused on the most is [2], which gener-
ally describes the process that I am looking for. However, [2] uses complicated math
notation that can confuse young readers. So, I decided to write my own research paper
that describes the mathematical process using only algebra and trigonometry. Because
[2] provides a numerical example, I can repeat the same example and compare answers
to see if my math is correct.

3 Mathematical Strategy

A transmission circuit usually consists of three bundles of conductors, where each bun-
dle carries one phase of power; this means that the electric current phase angle for each
bundle is different. A bundle usually consists of one, two or four conductors. If you
look carefully at Figure 1, then you will see that that the transmission towers support
three bundles of conductors, where each bundle consists of a pair of conductors. How-
ever, within a bundle, the separate conductors are very closely spaced together so that
a bundle of conductors can be modeled as one conductor. In Figures 2, 3 and 4, I have
drawn a simplified diagram of a hypothetical transmission circuit in the XYZ, YZ and
XZ coordinate planes, respectively. The three bundles of conductors are represented by
a red conductor (Conductor 1), a blue conductor (Conductor 2) and a purple conductor
(Conductor 3).

In Figure 2,  have drawn a person standing underneath the power lines. We want
to calculate the magnetic field strength at the location where the person is standing.
To do this, I will use the four-part strategy listed in Figure 5: (1) As a starting point,
we will only look at one conductor; (2) approximate the shape of the conductor using
small, straight segments; (3) calculate the magnetic field strength due to just one of
these segments; (4) define the position of the segment by using its left endpoint. By
following this four-part strategy, we can find the magnetic field strength at the location
of the person due to just one segment of one conductor. We can then expand the process
to find the magnetic field strength due to all the segments of the conductor. We can then
further expand the process to include the other two conductors.
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Figure 2: Depiction of a 3-phase circuit on the XYZ-plane.
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Figure 3: Depiction of a 3-phase circuit on the YZ-plane. In this scenario, the two
conductor attachment points are 20 m above ground and its sag point is 12.5 m above
ground. Note: this diagram only shows the red set of bundle conductors because,
viewing the conductors in this coordinate plane, the red set of bundle conductors block
the view of the blue and purple sets of bundle conductors.
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Figure 4: Depiction of a 3-phase circuit on the XZ-plane.

4 Find the Magnetic Field Created by a Conductor

For a given conductor, we will divide its length into m segments and use n to repre-
sent the index of the segments. The position of any Segment n will be expressed as
(%n, Yn, 2n), as shown in Figure 5. Since Segment n has finite length, there is no single
point that can truly represent its position. But if we make the segment relatively short,
then we can pretend that a single point can represent its position. This single point
can be anywhere along the length of Segment n but some easy choices would be the
left endpoint, midpoint, or right endpoint of the segment. In this paper, I will use the
left endpoint to represent the position of Segment n. Based on Figure 4, we see that
x,, = -10 for all segments of Conductor 1, z,, = 0 for all segments of Conductor 2, and
x, = 10 for all segments of Conductor 3. Finding z, is easy if we divide the conductor
length L into m equal segments, where L is approximated as the straight line distance
between the two towers as shown in Figure 3. The value z, is then calculated using the

following equation:

znzzmm+$- (1)

In (1), Zmin is the leftmost z-value of the conductor as shown in Figure 3. The only co-
ordinate left to find is y,,. Based on Figure 3, we see that when a conductor is installed,
it has a curved shape that resembles a parabola. This shape is called a catenary. The y-
value of the conductor, which represents its height above ground, can be found using
the catenary curve formula:

Y = Ymin cOsh (2) . (2)
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Step 1: Draw one conductor. Here, we pick Conductor 1.
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Step 2: Approximate the conductor using small, straight segments.
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Step 3: Calculate the magnetic field strength due to any Segment n.
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Step 4: Let the position of Segment n, (z,, y», 2,), be its left endpoint.

Figure 5: Our strategy: Calculate the magnetic field strength due to just one segment
of one conductor.



In (2), Ymin is the conductor sag point as shown in Figure 3 and a is the conductor radius
of curvature. We can find a using this formula:

0.5L 3)
cosh™1 (—ymax)

Ymin

a =

In (3), Ymax is the conductor attachment point as shown in Figure 3. So, for every value
2,, we can use (2) to find the corresponding value y,,. Now that we have the coordinate
of Segment n, the next step is to find the magnetic field strength that Segment n creates
at the location where the person is standing. This magnetic field strength can be found
using the Biot Savart Law:

—
 poldL, x 7,
N 47r,?

dB, (4)
This formula looks very complicated! But we can break down what it means. Since
the length of Segment n is relatively tiny compared to the total lengths of all three
conductors, Segment n will only contribute a tiny magnetic field at where the person
is standing. The variable dB,, represents this tiny contribution (the “d” in the variable
stands for differential, which indicates that the quantity is tiny). p, is the magnetic
permeability of free space and has the value 47-10~7 H/m. I is the amount of electrical
current in Segment n in Amperes, which will be the same as the amount of current
in the conductor. Because [ is a complex number, it will be given in the form of a
magnitude and phase angle, i.e., I = |I|£6°. For math purposes, we need to rewrite /
in standard form:

I =|I1£60° = I(cosf + jsinf). (5)

Next, r,, is the distance between Segment n and the person. If we let the position where
the person is standing be (z,, y,, 2,), then we can find r,, by using the distance formula:

=\ (@ = 20)? + (g — 1) + (2 — 20)?. (6)

—
The variable dL, represents a vector because it has an arrow on top of it. A vector is
a quantity that includes both magnitude and direction (e.g., “50 miles per hour to the

West” is a vector). Specifically, d?n is the vector representing the length and direction
of Segment n as shown in Figure 6. Since the overall conductor length is approximately
L and we divide the conductor into m segments, the length Az of any Segment n will
be:

Az = —.

m
As for the direction of Segment n, we see that, based on Figures 2 through 5, all con-

ductor segments will be pointing perfectly in the z-direction. So, dL,, can be rewritten
like this: N
dL, = Az- 2. (7)



In the above equation, 2 is the way we explicitly show that Segment n is pointing in the
z-direction. Finally, the variable 7, represents a unit vector because it has a “hat” shape
on top of it. If you remember from above, the variable ,, represented the distance
between Segment n and the person. So, 7, must represent the unit vector pointing
from Segment n to the person as shown in Figure 6:

P (IP — xn):?: + (yp - yn)g + (Zp - Zn)ZA?
n rn .

Figure 6: Diagram showing the vector dL,, and unit vector 7.

Now we know every variable in (4)! To solve for (4), the last thing we have to

understand is how to perform the cross product dL,, x r,, in the numerator. As it turns
out, finding the cross product of two vectors is pretty straightforward:

m % TAn — 0 0 AZ
Tp—Tn Yp—Yn Zp— Zn

T'n T'n T'n
— _Az(yp — yn).@ =+ Az(xp xn) ~ (8)
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We can substitute (8) into (4) to get a simpler looking equation:
- oIA — In) 4 OIA — 4dn) A
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Looking at (9), we see that Segment n creates, at the location where the person is stand-
ing, a differential magnetic field in the z-direction and a differential magnetic field in
the y-direction. The magnetic fields due to Segment n can be separated out according
to their direction:

—u-IA —
iB,,, — —Hel AW~ ) (10)
’ 47r,3
[Az(z, —
dB,, =" Aty = ), (11)
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After you solve (10) and (11), you will have the differential magnetic field in the 2-
direction and y-direction, respectively, created by just one segment of one conductor.
But, to find the total magnetic field due to the whole conductor, we need to solve (10)
and (11) for all m segments. The total magnetic field in the x-direction, B,, and the
total magnetic field in the y-direction, B,, due to the conductor can be written using
summation notation:

B, =) dB,n, (12)
n=1

B,=> dBy, (13)
n=1

For example, if we break the conductor into m = 300 segments, then (12) will have 300
terms and (13) will also have 300 terms.

5 Find the Magnetic Field Created by Three Conductors

Let the magnetic field in the = and y direction due to Conductor 1 be B, conda1 and
B, cond1, respectively. Similarly, let the magnetic field in the z and y direction due to
Conductor 2 be B, cond2 and B, cond2, respectively. Finally, let the magnetic field in
the x and y direction due to Conductor 3 be B, conds and By cond 3, respectively. In this
case, the total magnetic field in the z and y direction due to all three conductors, which
we can call B, iota1 and By, otal, Tespectively, will be:

Bx, total — Bx,Condl + Bx, Cond2 T+ Bx,CondS (14)
By, total — By,Condl + By,Cond2 + By,Cond?) (15)

The magnitude of the overall magnetic field B at the location where the person is
standing will be the resultant of B, (ot and B, ota1. Because the current [ is a com-

plex number, B, iota1 and By, tota1 Will also be complex numbers. So, the magnitude of B
will be:

2

|B| = \/(Re (Batoat))” + (Im (By o) ) + (Re (By o) )+ (I (Byioa) ) (16)



6 Numerical Example

The numerical example in this section comes from [2] and is based on the diagram
in Figure 7 which is taken from [2]. Assume that there is a transmission circuit that
consists of three bundles of conductors. The length of the conductors in the z-direction,
the placement of the conductors in the z-direction, and the curvature of the conductors
in the y-direction are exactly as depicted in Figures 2 through 4. Conductor 1 has a
current of I =1920 / -30°; Conductor 2 has a current of 7 = 1920 / -150°; and Conductor
3 has a current of I = 1920 £ 90°. Assume that a person is allowed to stand anywhere on
the z-axis from x = -30 m to = 30 m. What is the magnetic field strength at the location
where the person is standing? The problem asks that we calculate the magnetic field
strength at a height of 1 m above ground which is approximately halfway up the height
of an average person. This means that we need to find the magnetic field strength for a
range of coordinates, starting at (z,, y,, 2,) = (-30, 1, 0) and ending at (z,, y,, 2,) = (30, 1,
0). Based on my mathematical process, I created a Python computer code to solve the
problem. My code generated the plot shown in Figure 8. In my plot, the independent
variable is the z-coordinate in meters and the dependent variable is the magnetic field
strength |B| in Tesla. The answer published by the authors of [2] is reproduced in
Figure 9. If we compare the two figures, we see that the results are very similar. A
copy of my Python code is included in Appendix A.

SW1 SwW2

[.l.l,\:\._.:_; -

i
A x=300m

x=0m

Figure 7: Setup of the numerical example in [2]. To avoid confusion, please notice that
the orientation of the z, y and z-axis in my paper is different than the orientation of the
x, y and z-axis in [2].
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Figure 8: My answer to the numerical example in [2].
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Figure 8. Effective values of the total magnetic
flux density.

Figure 9: The answer shown in [2]. To avoid confusion, please notice that the orienta-
tion of the z, y and z-axis in my paper is different than the orientation of the z, y and
z-axis in [2].
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7 Conclusion

In this section, I would like to talk about two topics. The first topic is the strength
of the magnetic field beneath a 3-phase transmission circuit versus the strength of the
magnetic field emitted by common household appliances. The second topic is my
thoughts about the power of high school mathematics.

As shown in Figure 8, the maximum magnetic field strength in the numerical exam-
ple is approximately | B| = 32uT. However, this maximum value only occurs when the
person is standing directly underneath Conductor 2 at coordinate (z,, y,, 2,) = (0, 1, 0).
People usually do not live directly underneath a transmission circuit. Based on Figure
8, we see that if a person was to stand at coordinate (z,, y,, 2,) = (30, 1, 0) or (-30, 1, 0),
i.e.,, 20 m away from the closest conductor, then the magnetic field strength drops dra-
matically to approximately |B| = 2uT. As comparison, here are maximally-measured
magnetic field strengths at various distances away from some common electrical ap-
pliances, measured in xT; see [5]:

Appliance 3cm 30cm 1m
Hair dryer 2000 7 0.03
Electric shaver 1500 9 0.03
Drill 800 35 0.2
Vacuum cleaner 800 20 2
Fluorescent light | 400 2 0.25
Microwave oven 200 8 0.6
Portable radio 56 1 0.01
Electric oven 50 0.5 0.04
Washing machine 50 3 0.15
Iron 30 03 0.03
Dishwasher 20 3 0.3
Computer 30 001 O
Refrigerator 1.7 025 0.01
Television 50 2 0.15

To determine the typical magnetic field strength that a person is exposed to, I will
only look at items that are turned on constantly or for long durations. These items
include the fluorescent light, computer, refrigerator and old tube television sets. How-
ever, I will eliminate the refrigerator because people do not usually stand for long
durations near their refrigerators. So, there are only three items of concern. I estimate
that people are usually 1 m away from a fluorescent light, so the magnetic field strength
will be 0.25 i T. I estimate that people are usually sitting 30 cm away from the edge of
their laptop computer when in use, so the magnetic field strength will be 0.01 xT. I
estimate that people are usually more than 1 m away from a television when in use,
so the magnetic field strength will be much less than 0.15 xT. So, it seems that living
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at the edge of a transmission corridor could potentially expose you to a greater mag-
netic field strength than normal, especially if you consider the fact that a transmission
circuit is energized every second of every day. However, if you regularly use a hair
dryer, electric shaver, or vacuum cleaner, then the added magnetic field strength from
a transmission circuit is likely negligible.

In this paper, I have presented an easy mathematical process to calculate the mag-
netic field strength beneath a 3-phase transmission circuit. I have explained my process
using only algebra and trigonometry. My process is similar to the process published
in [2] by three university professors. However, my process is explained using sim-
ple mathematics. To test the accuracy of my process, I repeated a numerical example
shown in [2] and achieved very similar results. This proves that my process and my
Python code is accurate. My paper shows that it is possible for high school students to
use high school level mathematics to understand and replicate university-level work.

A Python Code

from mpmath import =
import numpy as np
import matplotlib.pyplot as plt

I1 = 2x960x (cos (radians (=30))+j*xsin(radians (=30)))
I2 = 2x960x (cos (radians (=150))+Jjxsin(radians (-150)))
I3 = 2x960x (cos (radians (90))+j*sin (radians (90)))
= 300
z = -L/2
x1 = =10
x2 = 0
x3 = 10
yinterest = 1
zinterest = 0
constant = 1x10%x%x—7

pieces = 100
deltaz = L/pieces

curvature = (L/2)/(np.arccosh (20/12.5))

for count in range(-150, 151):

xinterest = count*0.2
Bx = 0
By = 0

for countl in range(l,pieces+l):
yl = 12.5 * np.cosh(z / curvature)
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deltaBx = -1+ (yinterest-yl)+constant*«Il*deltaz/ (((xinterest -

x1)x*x2 + (yinterest - yl)*xx2 + (zinterest — z)**x2)*x1.5)
deltaBy = (xinterest-x1)xconstantxIl*deltaz/ (((xinterest - x1)
*%2 + (yinterest - yl)**2 + (zinterest - z)x%x2)x%x1.5)

Bx = Bx + deltaBx

By = By + deltaBy
z = z + deltaz
-L/2
count?2 in range (l,pieces+l) :
y2 = 12.5 x np.cosh(z / curvature)
deltaBx = -1+ (yinterest-y2)*constant*«I2+«deltaz/ (((xinterest -
X2)*%2 + (yinterest - y2)*xx2 + (zinterest — z)#*%2)*xx1.5)
deltaBy = (xinterest—-x2)xconstant+xI2+deltaz/ (((xinterest - x2)
*%x2 + (yinterest — y2)**x2 + (zinterest - z)*%2)*%x1.5)
Bx = Bx + deltaBx
By = By + deltaBy
z = z + deltaz
=, / 2
count3 in range (l,pieces+l):
y3 = 12.5 x np.cosh(z / curvature)
deltaBx = -1+ (yinterest-y3)*constant*«I3*deltaz/ (((xinterest -
x3)x*x2 + (yinterest - y3)*xx2 + (zinterest — z)**x2)*x1.5)
deltaBy = (xinterest-x3)xconstantxI3+deltaz/ (((xinterest - x3)
*%2 + (yinterest — y3)**2 + (zinterest - z)*%2)*%x1.5)
Bx = Bx + deltaBx
By = By + deltaBy
z = z + deltaz
-L/2

(Bx.real %% 2 + Bx.imag x*x 2 + By.real *xx 2 + By.imag #*x* 2) xx%
0.5
.subplot (1, 1, 1)
.plot (xinterest, B, color='green’, linestyle=’"dashed’,
linewidth=1, marker=’'o0o’, markerfacecolor='blue’, markersize=3)

bplot (1, 1, 1)

abel ("x_,(m)")

abel ("B_field _in Tesla’)
tle(’'B_field (3D _Model) ,vs. x-position’)
ght_layout ()

ow ()
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