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The Kelly Model for gambling and investing
Henk Tijms1

1 Introduction

In his book A Mathematician Plays the Stock Market [2], John Allen Paulos describes
a scenario that occurred during the wild times when dotcom companies were going
public on a daily basis. A certain investor is offered the following opportunity: Every
Monday for a period of 52 weeks, the investor may invest funds in the stock of one
dotcom company. On the ensuing Friday, the investor sells. The following Monday,
he purchases new stock in another dotcom company. Each week, the value of the
stock purchased has a probability of 1

2
of increasing by 80%, and a probability of 1

2
of

decreasing by 60%, independently of what happened in previous weeks. This means
that on average, the increase in value of the purchased stock is equal to

0.8× 1

2
− 0.6× 1

2
= 0.1 ,

giving an average return of 10% per week. The investor, who has a starting bankroll
of ten thousand dollars to invest over a period of the coming 52 weeks, doesn’t hesi-
tate for a moment; he decides to invest the full amount, every week, in the stock of a
dotcom company. After 52 weeks, it appears that our investor only has 2 dollars left
of his initial ten-thousand-dollar bankroll. He is, quite literally, at a loss to figure it all
out. But in fact, this investment result is not very surprising when you consider how
dangerous it is to rely on averages in situations involving uncertainty. A person can
drown, after all, in a lake that has an average depth of 25 cm. For situations involving
uncertainty factors, you should never work with averages, but rather with probabili-
ties! It is easily explained that the probability of nearly depleting the bankroll is large
if the investor invests his whole bankroll in each transaction. The most likely path to
develop over the course of 52 weeks is one in which the stock increases in value 50%
of the time, and decreases in value 50% of the time. This path results in a bankroll of
1.826 × 0.426 × 10 000 = 1.95 dollars after 52 weeks. Running one hundred thousand
simulations of the investments over 52 weeks renders a probability of about 50% that
the investor’s final bankroll will not exceed 1.95 dollars, and a small probability of
5.8% that the investor’s final bankroll will be greater than his starting bankroll of ten
thousand dollars.

Misled by seemingly favorable averages, our foolhardy investor stakes the full
amount of his bankroll every week. Apparently, he is unacquainted with the Kelly
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strategy. According to this strategy, rather than investing the full amount of his cur-
rent bankroll for every transaction, he would do better to invest a same fixed fraction
of his current bankroll each time and to keep in reserve a fixed fraction of his current
capital. The Kelly model will be discussed in the next sections. First, the case of a
single betting object is analyzed and then that of multiple betting objects.

The Kelly model is named after the physicist John Kelly Jr. Working at Bell Labs,
he published in 1956 a paper titled A New Interpretation of Information Rate [1] in the
Bell System Technical Journal. Virtually no one took much note of the article when it
first appeared. Nowadays it is widely used in gambling and investing. In the paper
Kelly posited a scenario in which a horse-race better has an edge: a ‘private wire’ of
somewhat reliable but not perfect tips from inside information. How should he bet?
Wager too little, and the advantage is squandered. Too much, and ruin beckons. The
Kelly bet size is found by maximizing the expected value of the logarithm of wealth,
which is equivalent to maximizing the expected geometric growth rate.

2 The Kelly model with a single betting object

Consider the situation in which you can repeatedly make bets in a particular game with
a single betting object. The game is assumed to be favorable to you, where favorable
means that the expected value of the net payoff of the game is positive. For every
dollar staked on a repetition of the game, you receive w1 dollars back with probability
p and w2 dollars with probability 1 − p, where 0 < p < 1, w1 > 1 and 0 ≤ w2 < 1. The
outcomes of the successive games are assumed to be independent of each other. The
key assumption for the Kelly betting model is as follows:

Assumption: The parameters p, w1 and w2 satisfy

pw1 + (1− p)w2 > 1 and pw1 + (1− p)w2 − 1 < (w1 − 1)(1− w2) .

The first condition says that the game is favourable to you in terms of one-step ex-
pected value. It is noted that the first condition implies the second condition if w2 = 0.
You start with a certain bankroll, and it is assumed that you may stake any amount
up to the size of your current bankroll each time. Then if you want to maximize the
growth rate of your bankroll over the long run, the Kelly formula advises you to stake
the following fixed fraction α of your current bankroll each time:

α =
pw1 + (1− p)w2 − 1

(w1 − 1)(1− w2)
. (1)

This formula will be derived in the next section. Note that, by the assumption made,
0 < α < 1. In the special case of w2 = 0, the Kelly formula (1) reduces to

α =
pw1 − 1

w1 − 1
, (2)

which can be interpreted as the ratio of the expected net gain per staked dollar and the
payoff odds.
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In the specific case of the investor with p = 0.5, w1 = 1.8 and w2 = 0.4, the Kelly
strategy requires him to invest a fraction 5

24
of his current bankroll for each transac-

tion. In practical terms, this renders a practically zero probability of his ending with
1.95 dollars or less after 52 weeks. Simulation reveals that applying the Kelly strategy
would give the investor about a 70% probability of ending with more than ten thou-
sand dollars after 52 weeks, and about a 44% probability of ending with more than
twenty thousand dollars.

The Kelly strategy was first used in casinos by mathematician Edward Thorp, in
order to try out his winning blackjack system. Later, Thorp and a host of famous in-
vestors including Warren Buffett, successfully applied a form of the Kelly strategy to
guide their stock market decisions.

3 Derivation of the Kelly formula

The strategy is to bet a fixed fraction α of your current bankroll each time, where 0 <
α < 1. Here it is supposed that winnings are reinvested and that your bankroll is
infinitely divisible. Letting V0 be your starting bankroll, define the random variable Vm

as
Vm = the size of your bankroll after m bets.

For the mth bet, let the random variable Wm be equal to w1 with probability p and be
equal to w2 with probability 1−p. Noting that Vm = (1−α)Vm−1+αVm−1Wm, it follows
by induction that

Vm =
(
1− α + αW1

)
× · · · ×

(
1− α + αWm

)
V0 for m = 1, 2, . . . .

In mathematics, a growth process is most often described with the help of an exponen-
tial function. This is the motivation to define the exponential growth factor Gm via the
relationship

Vm = V0e
mGm ,

where e = 2.71828 . . . is the base of the natural logarithm. If you take the logarithm of
both sides of this equation, then you see that the definition of Gm is equivalent to

Gm =
1

m
ln

(
Vm

V0

)
.

Using the product formula for Vm and the fact that ln(ab) = ln(a) + ln(b), you find

Gm =
1

m

(
ln
(
1− α + αW1

)
+ · · ·+ ln

(
1− α + αWm

))
.

Next, we apply the Law of Large Numbers, being one of the pillars of probability the-
ory. Since the random variables Xi = ln(1− α+ αWi) form a sequence of independent
random variables having a common probability distribution, the Law of Large Num-
bers gives

lim
m→∞

Gm = E
[
ln(1− α + αW )

]
with probability 1,
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where the random variable W is equal to w1 with probability p and is equal to w2 with
probability 1− p. Thus the long-run growth rate of your bankroll is equal to

lim
m→∞

Gm = p ln(1− α + αw1) + (1− p) ln(1− α + αw2) with probability 1.

Putting the derivative of g(α) = p ln(1− α + αw1) + (1− p) ln(1− α + αw2) equal to 0,
you get

p(w1 − 1)

1− α + αw1

+
(1− p)(w2 − 1)

1− α + αw2

= 0.

This gives the formula (1) after a little algebra. Since the second derivative of g(α) is
negative on (0, 1), the function g(α) is concave on (0, 1), and so g(α) attains its absolute
maximum for the value of α in (1).

For the Kelly model with a single betting object, further results including central
limit theorem type of results for Vm are discussed in Tijms [3].

4 Kelly betting with multiple betting objects

In investment situations and in sport events such as soccer matches and horse races,
multiple investments or bets can be simultaneously made. Imagine that opportunities
to bet or invest arise at successive times t = 1, 2, . . .. There are n betting objects j =
1, . . . , n, where n ≥ 2. You can simultaneously bet on one or more of these objects.

Assumptions
(a) At any betting opportunity, only one betting object can be successful (e.g., in a horse
race only one horse can win), where object j will be successful with a given probabil-
ity pj and non-successful with probability 1 − pj , independently of what happened at
earlier betting opportunities. Hereby,

0 < pj < 1 for allj and
n∑

j=1

pj = 1 .

(b) At any betting opportunity, a stake on each non-successful object j is lost, while
fj > 0 dollars are added to your bankroll for every dollar staked on a successful ob-
ject j. The payoffs fj are such that pjfj > 1 for at least one object j and

∑n
j=1 1/fj ≥ 1.

The probabilities pj are typically subjective probabilities being different for each
person. For example, in horse racing you can imagine that your personal estimates of
the win probability of the horses are different from the bookmaker’s estimates. In the
Assumptions, the requirement

∑n
j=1 pj = 1 can be relaxed to

∑n
j=1 pj ≤ 1: to do that,

introduce an auxiliary investment object n + 1 with fn+1 being very close to 0 and let
pn+1 = 1−

∑n
i=1 pi.

You start with a certain bankroll V0 and the question is how to maximize the long-
run growth rate of your bankroll. The Kelly betting strategy is now characterized by
parameters α1, . . . , αn such that αi ≥ 0 for i = 1, . . . , n and

∑n
i=1 αi ≤ 1. Under this
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strategy you stake the same fraction αi of your current bankroll in object i each time,
while you keep in reserve a fraction

β = 1−
n∑

i=1

αi

of your current bankroll. Denote by Vm the size of your bankroll after the mth betting
opportunity and let Gm = 1

m
ln(Vm/V0) be the growth rate of your bankroll over the

first m betting opportunities. Using again the law of large numbers, a generalization
of the analysis in Section 3 leads to

lim
m→∞

Gm = E
[
ln
(
β +

n∑
i=1

αiRi

)]
with probability 1 ,

where the random vector (R1, . . . , Rn) has the joint probability distribution

P (Ri = fi, Rj = 0 for j ̸= i) = pi for i = 1, . . . , n .

Thus, the long-run growth rate of your bankroll is equal to

lim
m→∞

Gm =
n∑

i=1

pi
(
ln(β + fiαi)

)
with probability 1 . (3)

The goal is to find the values for the αi’s such that the long-run growth rate of your
bankroll is maximal. Thus, you have to solve the following optimization problem:

Maximize f(β, α1, . . . , αn) =
n∑

i=1

pi ln(β + fiαi)

subject to β +
n∑

i=1

αi = 1

β, α1, . . . , αn ≥ 0 .

The objective function f(β, α1, . . . , αn) is concave on the convex set of feasible solutions
of the optimization problem, as can be shown by analyzing the second-order partial
derivatives of the function ln(x + y) in the two variables x, y > 0. An algorithm for
the optimal values of β and the αi’s can be derived from the specific Kuhn-Tucker
optimality conditions for a nonlinear optimization problem with linear constraints:

Maximize f(x1, . . . , xn)

subject to
n∑

j=1

aijxj = bi for i = 1, 2 . . . ,m ,

xj ≥ 0 for j = 1, . . . , n .

If the objective function f(x1, . . . , xn) is differentiable and concave on the convex set
of feasible solutions of the optimization problem, then a basic result in the theory of
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nonlinear optimization says that a global maximum is attained for the feasible solution
x∗ = (x∗

1, . . . , x
∗
n) if Lagrangian multipliers λ∗

1, . . . , λ
∗
m exist satisfying the Kuhn-Tucker

conditions
∂f(x∗)

∂xj

−
m∑
i=1

λ∗
i aij ≤ 0 for j = 1, . . . , n ,

x∗
j

(∂f(x∗)

∂xj

−
m∑
i=1

λ∗
i aij

)
= 0 for j = 1, . . . , n ,

n∑
j=1

aijx
∗
j = bi for i = 1, . . . ,m ,

x∗
j ≥ 0 for j = 1, . . . , n .

By these Kuhn-Tucker conditions, non-negative values β, α1, . . . , αn satisfying

β +
n∑

i=1

αi = 1

provide an optimal solution for the Kelly optimization problem if, for some real num-
ber λ,

pifi
β + fiαi

− λ ≤ 0 for i = 1, . . . , n ,
n∑

i=1

pi
β + fiαi

− λ ≤ 0 ,

αi

( pifi
β + fiαi

− λ
)
= 0 for i = 1, . . . , n , β

( n∑
i=1

pi
β + fiαi

− λ
)
= 0 .

The first and the third condition give

pifi
β

− λ ≤ 0 if αi = 0 and
pifi

β + fiαi

− λ = 0 if αi > 0 .

The key step is to assume that β > 0 in the optimal solution; that is, a positive pro-
portion of the bankroll is always kept in reserve. This premise is reasonable in view
of pj < 1 for all j. Taking β > 0, the fourth condition becomes

∑n
i=1 pi/(β + fiαi) = λ,

implying the second condition. Also, using the condition
∑n

i=1 αi = 1 − β, you easily
find that

β =

1−
∑
i∈V

pi/λ

1−
∑
i∈V

1/fi
with V = {i | αi > 0} .

Next is matter of some manipulations to get λ = 1 and to arrive at the algorithm for
the optimal values of the αi’s. We omit the technical details and merely give the final
algorithm.
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Algorithm

Step 0. Renumber the indexes such that p1f1 ≥ p2f2 ≥ · · · ≥ pnfn.

Step 1. Let r be the largest integer k for which
∑k

j=1 1/fj < 1.
Step 2. Calculate for each index k = 1, . . . , r the number

B(k) =

1−
k∑

j=1

pj

1−
k∑

j=1

1/fj

Let s be the first index k for which pk+1fk+1 < B(k), and let β = B(s).
Step 3. Set αi = pi − β/fi for i = 1, . . . , s and αi = 0 for i > s.

Index r satisfies r < n by part (b) of the Assumptions. This implies that B(s) > 0.
Therefore, αi < pi for all i and so

∑n
i=1 αi < 1. This verifies that β = 1 −

∑n
i=1 αi > 0;

that is, a positive fraction of your bankroll is kept in reserve each time. It is also noted
that the algorithm with n = 1 results in the optimal betting fraction (p1f1 − 1)/(f1 − 1),
in agreement with the Kelly formula (2) for the case of a single betting object.

Next we give two numerical examples to illustrate the algorithm.

5 Numerical examples

The Kelly strategy has been developed for situations in which many betting opportu-
nities repeat themselves under identical conditions. However, the Kelly strategy pro-
vides also a useful heuristic guideline for situations with only one betting opportunity.

Example 1 (soccer). Suppose that the soccer club Manchester United is hosting a match
against Liverpool, and that a bookmaker is paying out 4.5 times the stake if Liverpool
wins, 4.5 times the stake if the match ends in a draw, and 1.75 times the stake if Manch-
ester United wins. You estimate Liverpool’s chance of winning at 25%, the chance of
the game ending in a draw at 25%, and the chance of Manchester winning at 50%.
If you are prepared to bet 100 dollars, then how should you bet on this match? The
Kelly betting model with n = 3 betting objects applies, where

p1 = 0.25 (win Liverpool) ,
p2 = 0.25 (draw) ,

p3 = 0.50 (win United) ,
f1 = f2 = 4.5 and f3 = 1.75 .

Since p1f1 = p2f2 = 1.125 and p3f3 = 0.875, the condition p1f1 ≥ p2f2 ≥ p3f3 is satisfied.
The algorithm goes as follows:
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Step 1. r = 2 since 1/f1 =
10
45

, 1/f1 + 1/f2 =
20
45

and 1/f1 + 1/f2 + 1/f3 > 1 .
Step 2. B(1) = 27

28
, B(2) = 9

10
and p2f2 = 1.125 > B(1).

This gives s = 2 with β = B(s) = 0.9.
Step 3. α1 = α2 = 0.25− 0.9

4.5
= 0.05 and α3 = 0.

Thus, the Kelly strategy proposes that you stake 5% of your bankroll of 100 dollars
on a win for Liverpool, 5% on a draw, and 0% on a win for Manchester United. For
this strategy, the subjective expected value of your bankroll after the match is equal
to 100 − 10 + 0.25 × 4.5 × 5 + 0.25 × 4.5 × 5 = 101.25 dollars. The expected value of
the percentage increase of your bankroll is 1.25%. It is interesting to note that the two
concurrent bets on the soccer match act as a partial hedge for each other, reducing the
overall level of risk.

Example 2 (horse race). In a horse race, there are seven horses A, B, C , D , E, F and G
with respective win probabilities 40%, 25%, 20%, 7%, 4%, 3% and 1% and payoff odds
1.625:1, 2.9:1, 4.5:1, 9:1, 14:1, 17:1 and 49:1. Payoff odds a:1 means that in case of a win
you will receive your stake plus a dollars for each dollar staked. Numbering the horses
as 1 (= C), 2 (= A), 3 (= B), 4 (= D), 5 (= E), 6 (= F ), and 7 (= G), the Kelly model
applies with

p1 = 0.2 p2 = 0.4 p3 = 0.25 p4 = 0.07 p5 = 0.04 p6 = 0.03 p7 = 0.01
f1 = 5.5 f2 = 2.625 f3 = 3.9 f4 = 10 f5 = 15 f6 = 18 f7 = 50

satisfying the condition of decreasing pifi values:

p1f1 = 1.1

p2f2 = 1.05

p3f3 = 0.975

p4f4 = 0.7

p5f5 = 0.6

p6f6 = 0.54

p7f7 = 0.50 .

The algorithm goes as follows:

Step 1. The index r = 5 is the largest value of k for which
∑k

j=1 1/fj < 1.
Step 2. B(1) = 0.9778, B(2) = 0.9149, B(3) = 0.8296, B(4) = 0.9899 and B(5) = 2.8264.

Also, p2f2 > B(1) and p3f3 > B(2) but p4f4 ≤ B(3).
This gives s = 3 with β = B(s) = 0.8296.

Step 3. α1 = 0.0492, α2 = 0.0840, α3 = 0.0373 and αj = 0 for j > 3.

Thus you bet 8.4% of your bankroll on horse A, 3.7% on horse B, 4.9% on horse C
and nothing on the other horses. It is noteworthy that horse B is included in your bet,
even though a bet on horse B alone is not favorable (p3f3 < 1). The expected value of
the percentage increase of your bankroll is 100×

∑3
j=1(pifiαi − αi) = 4.6%.
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