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Visualization of the third derivative of functions
Leon Wang1

1 Introduction

In the first-year Calculus classes in high schools and colleges, visualization is an impor-
tant tool for the understanding of abstract concepts such as derivatives. For example,
the first derivative can be visualized as the slope of the tangent line. Typical textbooks
in Calculus [1] discuss the second derivative in the context of concavity and the Sec-
ond Derivative Test. They do not offer the direct visualization of the second derivative.
Hardly any textbooks mention how to visualize the third derivative. In this article, we
develop an interesting way to visualize the second and the third derivatives of single
variable functions.

Visualization is both art and science. It targets to render an abstract concept into more
basic entities and relationships through geometric representations. There may be mul-
tiple ways to visualize one concept. A good visualization should build on basic geo-
metric elements, such as lengths, angles, and areas that can be drawn, at least concep-
tually, on the graph of the function. Derivatives involve limits. In this article, we will
follow the traditional way of infinitesimal analysis to develop the visualizations.

2 Second Derivative

The first derivative of a function can be visualized as the slope of the tangent line.
To visualize the second derivative, we need to analyze how the tangent line moves
associated with the move of the independent variable of the function. In Figure 1, we
draw the tangent line at two points.
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(leonwang974@gmail.com)
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Figure 1

Let A = (x, f(x)) be a point on the graph of y = f(x). We want to develop the vi-
sualization of the second and third derivatives at point A. For a small ∆x, let point
B = (x+∆x, f(x+∆x)) be the point on the graph of y = f(x) where the independent
variable moves from x to x+∆x. Now let E = (x+∆x, f(x)) and we have |AE| = ∆x.

For the first derivative at point A, we draw the tangent line of y = f(x) at point A and
let point J be the intersection of that tangent line and line BE. From the definition of
the derivative, f ′(x) is the slope of line AJ . Thus, f ′(x) = |JE|/|AE|.

Now imagine that we move from point A to point B along the curve of y = f(x). The
tangent line AJ will rotate and shift, and eventually move to line BK, which is the
tangent line at point B. The derivative at point B is f ′(x+∆x) = |KG|/|BG|.

The second derivative of f(x) at point A, f ′′(x), is the limit of (f ′(x+∆x)− f ′(x))/∆x
as ∆x → 0. To visualize the second derivative f ′′(x), we need to analyze two elements
related to the rotation and shift of the tangent line: the tangential angle and the speed
function.

Tangential angle

The tangential angle θ(x) of function f(x) at x is defined as the measure (in radians) of
the angle formed between the tangent line of the graph y = f(x) at the point (x, f(x))
and the positive x-axis. We assume that −π/2 < θ(x) < π/2. If the tangent line has a
negative slope, then θ(x) is also negative.
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From Figure 1, we see that line AE is parallel to the x-axis and
−→
AE is pointing to the

positive x direction. Therefore, ∠JAE is the angle between the tangent line AJ and the
positive x-axis; thus, θ(x) = ∡JAE. Similarly, we have θ(x+∆x) = ∡KBG.

Speed function

As we will demonstrate next, another important element in the visualization of the sec-
ond derivative f ′′(x) is the speed function. Using the concepts from elementary differ-
ential geometry [2, p. 52], we can consider the graph of y = f(x) as a two dimensional
curve α(t) = (x(t), y(t)) with the time variable t = x. That is, (x(t), y(t)) = (t, f(t)).
Then, the velocity of the curve α(t) is α′(t) = (x′(t), y′(t)) = (1, f ′(t)). The speed
function, v(t), of the curve α(t), is defined as the magnitude of the velocity vector:
v(t) = ∥α′(t)∥ =

√
x′(t)2 + y′(t)2. Replacing t with x, we can write the speed function

of the graph of y = f(x) in terms of x,

v(x) =
√

1 + (f ′(x))2 . (1)

In Figure 2 below, we imagine that as the independent variable moves from x to x+∆x,
the graph of y = f(x) extends from point A to point B. The speed function v(x) is the
rate of change of the length of the graph with respect to the change of the independent
variable.

A(x, f(x))

B(x+∆x, f(x+∆x))

E(x+∆x, f(x))
∆x

y = f(x)

Figure 2

In fact, for a small ∆x, the length of the graph between point A and point B can be
approximated by |AB|. Using △ABE, we have

|AB|2 = |AE|2 + |BE|2 = ∆x2 + (f(x+∆x)− f(x))2 .

Therefore,

lim
∆x→0

|AB|
∆x

=
√

1 + (f ′(x))2 = v(x) .

The definite integral of the speed function of a curve is called the arc length of the curve
[2, p. 53]. For the graph of the function y = f(x),

∫ b

a
v(x)dx =

∫ b

a

√
1 + (f ′(x))2dx is the

arc length from point (a, f(a)) to point (b, f(b)). Thus, the speed function is the rate of
the change of the arc length of the function.
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Visualization of the second derivative

From the definition of tangential angle θ(x), we have

tan(θ(x)) = f ′(x) .

Taking the inverse function of the above, we get

θ(x) = arctan(f ′(x)) . (2)

We differentiate both sides of Equation (2) with respect to variable x. Using the formula
(arctan(u))′ = u′/(1 + u2), we have

θ′(x) =
f ′′(x)

1 + (f ′(x))2
.

Rearranging the above equation and using Equation (1), we get

f ′′(x) = θ′(x)(v(x))2 . (3)

Equation (3) provides the basis for the visualization of the second derivative. As we
move along the graph of the function y = f(x), we observe a rotation of the tangent
line and an extension of the arc length. Here, θ′(x) can be visualized as the angular
velocity of the rotation of the tangent line, and v(x) is the rate of the extension of the
arc length (speed function).
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B
θ(x+∆x)

K

G

E
∆x

θ(x+∆x)− θ(x)
J

y = f(x)

Figure 3

In Figure 3, we magnify the part of △ABE in Figure 1. We extend the tangent line AJ
to point A′ with |AA′| = |AB|. Notice that line BK is the tangent line at point B. In
order to evaluate magnitude of rotation between the two tangent lines AJ and BK,
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we draw a line passing through point A and parallel to line BK and extend the line to
point D such that |AD| = |AB|. Next, we draw an arc with center at point A and the
radius of |AB| which connects point A′, B, and D by arc A′D.

Sector AA′D, shaded in green colour in Figure 3, is the key to the visualization of f ′′(x).
We know that the area of sector AA′D is

Area(Sector(AA′D)) =
1

2
∡DAA′|AB|2 .

From the definition of tangential angle, we have ∡JAE = θ(x) and ∡KBG = θ(x+∆x).
Notice that AD ∥ BK. Therefore,

∡DAA′ = ∡KBG− ∡JAE = θ(x+∆x)− θ(x) ≈ θ′(x)∆x .

Furthermore, from the discussion of speed function, we have |AB| ≈ v(x)∆x. There-
fore,

Area(Sector(AA′D)) =
1

2
∡DAA′|AB|2 ≈ 1

2
θ′(x)(v(x))2))(∆x)3 .

Together with Equation (3), we have

f ′′(x) = 2 lim
∆x→0

Area(Sector(AA′D))

(∆x)3
.

For a small fixed ∆x, the radius of the green shaded sector AA′D is the visualization
of v(x) and the angle of the sector is the visualization of θ′(x). The area of sector AA′D
multiplying by 2 is the visualization of the second derivative f ′′(x).

Proposition 1. The visualization of the second derivative is 2 times the area of a sector whose
angle is the angular velocity of the rotation of the tangent line and whose radius is the speed
function.

A(x,f(x))

y = f(x)

θ′(x)

Area = 1
2θ

′(x)(v(x))2

v(x)

f ′′(x) = θ′(x)(v(x))2

Figure 4
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The second derivative and the shape of the graph

The angular velocity θ′(x) can be positive or negative. As x increases, if the tangent
line rotates counter-clockwise, then θ′(x) > 0. In Figure 3, this is the case that line AD
is above line AA′. If the tangent line rotates clockwise, then θ′(x) < 0 (line AD is below
line AA′). Since (v(x))2 > 0, the sign of f ′′(x) is fully determined by the sign of θ′(x).
The direction of the tangent line rotation is a good visualization of the concavity of the
function.

Proposition 2. If the tangent line rotates counter-clockwise when x increases, then the func-
tion is concave upward. If the tangent line rotates clockwise when x increases, then the function
is concave downward.

A

A’

B

D

θ′(x) > 0, Concave Upward

A

A’

B

D

θ′(x) < 0, Concave Downward

Figure 5

3 Third Derivative

With the preparations from the previous section, we can now develop the visualization
of the third derivative. Equation (3) expresses the second derivative as the product of
the angular velocity of the tangent line rotation and the square of the speed function.
Differentiating both sides of Equation (3), we have

f ′′′(x) = θ′′(x)(v(x))2 + 2θ′(x)v(x)v′(x) . (4)

To visualize the third derivative, we use the visualization of the second derivative
from the previous section to study how the sector of the second derivative changes
with respect to change of x.
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Figure 6

The third derivative is the rate of change of the second derivative,

f ′′′(x) = lim
∆x→0

f ′′(x+∆x)− f ′′(x)

∆x
.

As shown in Figure 6, we know that the area of sector AA′D multiplied by 2 is the
visualization of f ′′(x). To visualize f ′′(x + ∆x), we will construct the similar sector,
sector BB′F , at point B = (x+∆x, f(x+∆x)). Here, we have BF ∥ CC ′ where CC ′ is
the tangent line at point C = (x+∆x+∆x2, f(x+∆x+∆x2)) and |BB′| = |BF | = |BC|.
To visualize f ′′(x + ∆x) − f ′′(x), we need to subtract the area of sector AA′D (green
shade) from the area of sector BB′F (yellow shade). To do so, we move sector BB′F
on top of sector AA′D so that point B coincides with point A and the side BB′ overlies
the side AA′.
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Sector BB′F in Figure 6 is now moved to sector AQP in Figure 7. In the case shown in
Figure 7, sector AQP is longer and wider than sector AA′D. In general, depending on
the shape of the graph, Sector AQP may be shorter and/or narrower than sector AA′D.
Let point R be the intersection of the extension of arc A′D and line AP and point S be
the intersection of arc PQ and the extension of line AD. The difference between sector
AQP and sector AA′D consists of three parts:

Area(AQP )− Area(AA′D) = Area(A′QSD) + Area(ADR) + Area(DSPR) .

The area Area(DSPR) is of higher order in terms of ∆x and ∆x2 than Area(A′QSD)
and Area(ADR), and is negligible as ∆x → 0 and ∆x2 → 0.

Rotational component

From Equation (4), we can see that f ′′′(x) has two components. The first, θ′′(x)(v(x))2,
is associated with the rate of the change of the angular velocity (angular acceleration)
of the rotation of the tangential line and can be visualized by sector ADR in Figure 7.
For sector ADR, its radius is |AD| = |AB| ≈ v(x)∆x and its angle,

∡DAR = ∡RAA′ − ∡DAA′ = ∆θ(x+∆x)−∆θ(x) .

Here we can use second differential notation ∆2 and write

∆θ(x+∆x)−∆θ(x) = ∆2(θ(x)) .

Therefore,

Area(Sector(ADR)) =
1

2
|AD|2∡DAR ≈ 1

2
(v(x)∆x)2∆2(θ(x)) .
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Dividing both sides of the above the equation by (∆x)4 and letting ∆x → 0, we have

lim
∆x→0

Area(Sector(ADR))

(∆x)4
=

1

2
lim

∆x→0

∆2(θ(x))

(∆x)2
(v(x))2 =

1

2
θ′′(x)(v(x))2 . (5)

For a small fixed ∆x and ∆x2, the angle of sector ADR is the visualization of θ′′(x)
and the radius of the sector is the visualization of v(x). The area of sector ADR mul-
tiplying by 2 is the visualization of the rotational component, θ′′(x)(v(x))2, of the third
derivative f ′′′(x).

Extension component

The second component of f ′′′(x) in Equation (4), 2θ′(x)v(x)v′(x), is associated with the
rate of change of the speed function (the acceleration of the extension of the arc length)
and can be visualized by disk sector A′QSD in Figure 7. For A′QSD, its inner radius
is |AB| ≈ v(x)∆x and the outer radius is |AQ| ≈ v(x + ∆x)∆x. The angle of the disk
sector is the smaller one between ∡DAA′ = ∆θ(x) and ∡PAQ = ∆θ(x+∆x). Thus, we
have

Area(A′QSD) ≈ 1

2
∆θ(x)(v(x+∆x) + v(x))(v(x+∆x)− v(x))(∆x)2 .

From this, we have

lim
∆x→0

Area(A′QSD)

(∆x)4
= lim

∆x→0

∆θ(x)

∆x
v(x)

∆v(x)

∆x
= θ′(x)v(x)v′(x) . (6)

For a small fixed ∆x and ∆x2, the angle of disk sector A′QSD is the visualization of
θ′(x). The inner radius of A′QSD is the visualization of v(x) and the difference between
the outer radius and the inner radius of A′QSD is the visualization of v′(x). Thus,
the area of disk sector A′QSD multiplying by 2 is the visualization of the extension
component, 2θ′(x)v(x)v′(x), of the third derivative f ′′′(x).

In summary, we know from Proposition 1 that the second derivative is 2 times the area
of a sector whose angle is the angular velocity θ′(x) and whose radius is the speed
function v(x). As we move from x to x +∆x, there are changes in both the angle θ′(x)
and the radius v(x) of the second derivative sector. The resulted change of the area of
the sector consists of two components. The first one, θ′′(x)(v(x))2, from the change of
the angle of the sector, is associated with the angular acceleration of the rotation of the
tangent line. The second component, 2θ′(x)v(x)v′(x), from the change of the radius of
the sector, is associated with the acceleration of the extension of the arc length.

Proposition 3. The visualization of the third derivative is 2 times the sum of the areas of a
sector and a disk sector (either area may have negative sign). For the sector, its angle is the
angular acceleration of the rotation of the tangent line and its radius is the speed function. For
the disk sector, its angle is the angular velocity of the rotation of the tangent line. One radius
of the disk sector is the speed function and the other one is the speed function plus the rate of
change of the speed function.
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Figure 8

Relationship with curvature

The concept of tangential angle θ(x) plays a key role in the visualization of the third
derivative. It is the angle formed between the tangent line and the positive x-axis. The
angle θ(x) is related to the concept of curvature κ in elementary differential geometry
[2, p. 68]. In fact, for a single variable function y = f(x),

κ(x) =
|f ′′(x)|

(1 + (f ′(x))2)
3
2

.

Using speed function v(x), when f ′′(x) > 0, we have

f ′′(x) = κ(x)(v(x))3 . (7)

Differentiating both sides of the above equation gives us

f ′′′(x) = κ′(x)(v(x))3 + 3κ(x)(v(x))2v′(x) . (8)

It is difficult to make visualization of f ′′(x) and f ′′′(x) from Equation (7) and (8). The
fundamental issue here is that curvature κ is designed to measure how far a curve is
deviated from the straight line in a coordinate-independent way. But for a single vari-
able function y = f(x), the definition of its derivatives are based on the existing (x, y)
coordinate system. That is, the derivatives of f(x) are not coordinate-independent.
This is why the tangential function θ(x), which measures the angle between the tan-
gent line and the positive x-axis, is a better entity than κ(x) to build the visualization
of f ′′(x) and f ′′′(x).
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Relationship to the shape of the graph

As we discussed in Section 2, the equation f ′′(x) = θ′(x)(v(x))2 connects f ′′(x) directly
with shape of the graph of y = f(x). f ′′(x) > 0 if and only if θ′(x) > 0, which im-
plies that the tangent line rotates counter-clockwise and the graph is concave upward.
f ′′(x) < 0 if and only if θ′(x) < 0, which implies that the tangent line rotates clockwise
and the graph is concave downward.

Unfortunately, such direct relationship between the second derivative and the shape
of the graph does not hold for the third derivative. From Equation (5), we can see that
f ′′′(x) is the sum of the rotational component (angular acceleration of the rotation of
the tangent line), θ′′(x)(v(x))2, and the extension component (the acceleration of the
extension of the arc length), 2θ′(x)v(x)v′(x). Because f ′′′(x) is sum of the two parts,
f ′′′(x) > 0 does not imply θ′′(x) > 0 nor v′(x) > 0. This is the reason that it is not easy
to directly observe the relationship between f ′′′(x) and the shape of the graph.

In the following tables, we present the data of the function f(x) = x3 to highlight
the issues associated with the relationship between the third derivative and the shape
of the graph. In the table, Rot = θ′′(x)(v(x))2 and Ext = 2θ′(x)v(x)v′(x). Though
f ′′′(x) = 6 > 0 for all x, the angular velocity of the rotation of the tangent line stops
increasing and the graph of f(x) = x3 does not get curvier once x passes a point around
0.4. As x further increases, the angular velocity θ′(x) and angular acceleration θ′′(x)
gradually reduce to a negligible level and f ′′(x) and f ′′′(x) are influenced mainly by
the speed function, v(x), and the acceleration of the extension of the arc length, v′(x).
Thus, the third derivative alone may not offer much information about shape of the
graph because the counter actions between the rotational component and the extension
component.
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f(x) = x3

x f(x) f ′(x) f ′′(x) f ′′′(x) v(x) v′(x) θ′(x) θ′′(x) Rot Ext
0.10 0.00 0.03 0.60 6.00 1.00 0.01 0.59 5.97 5.97 0.02
0.20 0.00 0.12 1.20 6.00 1.00 0.14 1.18 5.57 5.65 0.34
0.30 0.02 0.27 1.80 6.00 1.03 0.46 1.67 4.07 4.36 1.63
0.40 0.06 0.48 2.40 6.00 1.10 1.03 1.95 1.22 1.50 4.49
0.50 0.12 0.75 3.00 6.00 1.25 1.80 1.92 -1.69 -2.64 8.64
0.60 0.21 1.08 3.60 6.00 1.47 2.64 1.66 -3.20 -6.93 12.92
0.70 0.34 1.47 4.20 6.00 1.77 3.47 1.32 -3.30 -10.41 16.40
0.80 0.51 1.92 4.80 6.00 2.16 4.25 1.02 -2.75 -12.88 18.87
0.90 0.72 2.43 5.40 6.00 2.62 4.99 0.78 -2.11 -14.53 20.52
1.00 1.00 3.00 6.00 6.00 3.16 5.69 0.60 -1.56 -15.60 21.60
2.00 8.00 12.00 12.00 6.00 12.04 11.95 0.08 -0.13 -17.84 23.83
5.00 125.00 75.00 30.00 6.00 75.00 29.99 0.00 -0.01 -18.00 23.99
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Appendix

Geometric derivation of the second derivative formula

Equation (3) for the visualization of the second derivative, f ′′(x) = θ′(x)(v(x))2, is de-
rived algebraically using formulae in calculus, especially the derivative of arctan(x).
In this Appendix, we provide a direct geometric derivation of Equation (3).

A θ(x)

A’

D

B
θ(x+∆x)

K

G

E
∆x

θ(x+∆x)− θ(x)
J

y = f(x)

H

Figure 9

We modify Figure 3 slightly into Figure 9. Recall that A = (x, f(x)), B = (x+∆x, f(x+
∆x)), E = (x+∆x, f(x)), line AJ is the tangent line at point A, line BK is the tangent
line at point B. Line AD is the line parallel to line BK. We extend line AD to point H .
Points A′, B and D are connected by arc A′BD with |AD| = |AB| = |AA′|.

From the definition of tangential angle, we have θ(x) = ∡JAE. Furthermore, the slope
of line AJ is the first derivative f ′(x). Thus,

f ′(x) = |JE|/|AE| = |JE|/∆x .

Similarly, since AH∥BK, θ(x + ∆x) = ∡KBG = ∡HAE and the slope of line AH is
f ′(x+∆x),

f ′(x+∆x) = |HE|/|AE| = |HE|/∆x .

Therefore,
|HJ | = |HE| − |JE| = (f ′(x+∆x)− f ′(x))∆x .

HJ and AE form the base and the height of △AHJ . Thus,

Area(△AHJ) =
1

2
|HJ ||AE| = 1

2
(f ′(x+∆x)− f ′(x))(∆x)2 .

13



From the definition of the second derivative,

f ′′(x) = lim
∆x→0

f ′(x+∆x)− f ′(x)

∆x
= lim

∆x→0

2Area(△AHJ)

(∆x)3
. (9)

From Figure 9, we can see that ∠HAJ in △AHJ is the difference between two tangen-
tial angles:

∡HAJ = ∡HAE − ∡JAE = θ(x+∆x)− θ(x) = ∆θ(x) . (10)

Using the formula of the area of a triangle, Area = 1
2
ab sin(C), we have

Area(△AHJ) =
1

2
|AH||AJ | sin(∡HAJ) . (11)

Using the notion of infinitesimal approach, from Figure 9, we observe that as ∆x → 0,
both |AH| ≈ |AB| and |AJ | ≈ |AB|. Furthermore, using the formula in calculus,
limθ→0 sin(θ)/θ = 1, we have sin(∡HAJ) ≈ ∡HAJ as ∆x → 0.
Now substituting |AB| for |AH| and |AJ | and ∡HAJ for sin(∡HAJ) in Equation (11),
we have Area(△AHJ) = 1

2
|AH||AJ | sin(∡HAJ) ≈ 1

2
|AB|2∡HAJ as ∆x → 0. Notice

that 1
2
|AB|2∡HAJ is exactly the area of sector AA′D. Together with Equation (9),

f ′′(x) = lim
∆x→0

2Area(Sector(AA′D))

(∆x)3
= lim

∆x→0

|AB|2

(∆x)2
∡HAJ

∆x
. (12)

From the definition of speed function, we have

lim
∆x→0

|AB|
∆x

= v(x) .

By Equation (10), we get

lim
∆x→0

∡HAJ

∆x
= lim

∆x→0

∆θ(x)

∆x
= θ′(x) .

Together with Equation (12), we thereby prove that

f ′′(x) = θ′(x)(v(x))2 .
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