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A generalisation of
the Arithmetic-Logarithmic-Geometric Mean Inequality

Toyesh Prakash Sharma1

1 Introduction

It was a usual boring day when I was searching for something new, and the discontin-
ued publication Mathematical Spectrum came to mind. In the back issues of the mag-
azine2, I found a letter to the editor written by Spiros P. Andriopoulos [1]. He referred
to an inequality that was published in the Octogon Mathematical Magazine [3] that
proves, for all positive real numbers a and b, the Arithmetic-Logarithmic-Geometric
Mean Inequality:

√
ab <

a− b

ln a− ln b
<

a+ b

2
.

In this article, we use the Hermite-Hadamard Inequality [6, 9] to prove the following
inequality:

Theorem 1. Let n be a non-negative integer. If x > y > 0, then

√
xy(ln

√
xy)n−1(ln

√
xy + n) <

x(lnx)n − y(ln y)n

lnx− ln y

<
x(lnx)n−1(lnx+ n) + y(ln y)n−1(ln y + n)

2
.

It is the first time that I have come across such a powerful inequality that is applicable
for convex functions.

By setting n = 0 in the expressions above, we have

√
xy(ln

√
xy)−1(ln

√
xy) <

x− y

lnx− ln y
<

x+ y

2
.

Therefore, we obtain the following logarithm extension to the Arithmetic Mean and
Geometric Mean Inequality (AM-GM Inequality) [10]:

Corollary 2.
√
xy <

x− y

lnx− ln y
<

x+ y

2
.

1Toyesh Prakash Sharma is a student of Agra College, Agra, India.
2These back issues are now kindly provided by the Applied Probability Trust on their website

https://appliedprobability.org/.
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2 The Hermite-Hadamard Inequality

A function f(x) is convex in an interval [a, b] if the second derivative f ′′(x) is non-
negative for all x ∈ (a, b). Convex functions satisfy the Hermite-Hadamard Inequality:

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1)

This inequality is named after the famous mathematicians Charles Hermite and
Jacques Hadamard, whose photos [8, 11] are shown here:

./
Charles Hermite (1822-1901) Jacques Hadamard (1865-1963)

We provide a simple graphical proof of the Hermite-Hadamard Inequality.
In particular, consider the following three shapes:

a a+b
2 b a a+b

2 b

f(a)

f(b)

a b

f(a)

f(b)

The middle shape is the area beneath the curve of the function f(x) for x ∈ [a, b].
The first shape shows the area beneath the tangent to the curve of f(x) in the point
x = (a + b)/2. The last shape shows the area beneath the line from point

(
a, f(a)

)
to

point
(
b, f(b)

)
Expressed mathematically, these areas are, respectively,

(b− a)f
(a+ b

2

)
,

∫ b

a

f(x)dx , (b− a)
f(a) + f(b)

2
.
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Since f(x) is convex, the three areas are non-decreasing in size; so

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

This is the Hermite-Hadamard Inequality, which we have hereby proved.

Next, we introduce two examples of Hermite-Hadamard Inequality, the first of
which is the following lemma, due to Spiros P. Andriopoulos [2].

Lemma 3. For all x ∈ (0, π
2
),

esinx − etanx

sinx− tanx
> ex .

Proof. Let f(x) = ex. By the Hermite-Hadamard Inequality,

eb − ea

b− a
=

∫ b

a
exdx

b− a
> e

a+b
2 .

Therefore, for all x ∈ (0, π
2
),

esinx − etanx

sinx− tanx
> e(

sin x+tan x
2

) . (2)

According to [5], sinx + tanx > 2x for all x ∈ (0, π
2
), so, by applying this inequality

to (2), we find that
esinx − etanx

sinx− tanx
> ex .

2

The second example is an inequality proposed by Dorin Marghidanu [4].

Lemma 4. If b > a, then

a+ b

2
< ln

eb − ea

b− a
< ln

eb + ea

2
<

eb + ea − 2

2
.

Proof. Let f(x) = ex. By the Hermite-Hadamard Inequality,

e
a+b
2 ≤

∫ b

a
exdx

b− a
=

eb − ea

b− a
≤ eb + ea

2
,

so
a+ b

2
< ln

eb − ea

b− a
< ln

eb + ea

2
.

According to [7], lnx < x− 1 for all x > 0, so

ln
eb + ea

2
<

eb + ea − 2

2
.

Therefore,
a+ b

2
< ln

eb − ea

b− a
<

eb + ea − 2

2
.

2
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3 Proof of Theorem 1

Let k be a positive integer, suppose that b > a > 0, and define f(x) = xkex for all
x ∈ [a, b]. By the Hermite-Hadamard Inequality and partial integration,(a+ b

2

)k

e
a+b
2 ≤ 1

b− a

∫ b

a

xkekdx =
bkeb − akea

b− a
− k

b− a

∫ b

a

xk−1exdx ,

so (a+ b

2

)k

e
a+b
2 +

k

b− a

∫ b

a

xk−1exdx ≤ bkeb − akea

b− a
.

Now define f(x) = xk−1ex for all x ∈ [a, b]. By the Hermite-Hadamard Inequality,(a+ b

2

)k−1

e
a+b
2 ≤ 1

b− a

∫ b

a

xk−1ek−1dx .

so(a+ b

2

)k

e
a+b
2 + k

(a+ b

2

)k−1

e
a+b
2 ≤

(a+ b

2

)k

e
a+b
2 +

k

b− a

∫ b

a

xk−1exdx ≤ bkeb − akea

b− a
.

Now substitute eb = x, ea = y and k = n:

√
xy(ln

√
xy)n−1(log

√
xy + n) =

√
xy

(
ln
√
xy

)n
+ n

√
xy(ln

√
xy)n−1

=
( ln y + lnx

2

)n

e(
ln y+ln x

2
) + n

( ln y + lnx

2

)n−1

e(
ln y+ln x

2
)

≤ x lnn x− y lnn y

lnx− ln y
.

This proves one inequality of Theorem 1. The other inequality is proved similarly. □
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