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Non-negative numbers and infinitely nested square roots
Alaric Pow Ian-Jun1

1 Introduction

The study of square roots has always been fascinating to me. I’ve always loved solv-
ing mathematics problems that heavily involved square root manipulation; it’s pretty
elegant when a complicated square root expression, which is typically not computable
to exact precision, can be broken down into a result that most of us can understand.
My article shows you the beauty of square roots, and how non-negative numbers can
be expressed as infinitely nested square roots. A decent understanding of sequences,
mathematical proofs and, of course, square roots is an important prerequisite before
reading my paper.

2 What I seek to prove

Let’s get a little more technical. In my paper, I prove that any number greater than 1

can be expressed as an infinitely nested square root of the form
√
k +

√
k +

√
k + · · ·

for some non-negative constant k. To put it more formally,

“For any real number N > 1,

N =

√
k +

√
k +

√
k + · · · for some non-negative constant k.”

2.1 The necessary proof of convergence

Before we make sense of the expression, we need to show that for any non-negative

constant k,
√

k +
√

k +
√
k + · · · is convergent. The proof of convergence would re-

move any ambiguity related to infinity.

2.2 Addressing the cases N = 0 and N = 1

After our proof of convergence, I will be addressing the cases where N = 0 and N = 1.
These cases need to be considered separately, for reasons you will discover as you
delve deeper into the paper.

1Alaric Pow is a student from Singapore who has graduated from Hwa Chong Institution.
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2.3 The proof

Once we get that out of the way, we’ll go into the exact details of how any real num-
ber greater than 1 can be expressed as an infinitely nested square root of the form√

k +
√

k +
√
k + · · · for some non-negative constant k.

3 Convergence

Let’s begin by proving that for any non-negative constant k,
√

k +
√

k +
√
k + · · · is

convergent. To do this, let’s use a recurrence relation to model this expression:

x1 =
√
k and xn+1 =

√
k + xn .

We now need to prove the convergence of {xn} as n approaches infinity. This will be
done in a two-step process - firstly, we’ll show that {xn} is non-decreasing and, next,
we’ll show that {xn} is bounded. By the Monotone Convergence Theorem, {xn} is
convergent if these two conditions are proven.

3.1 {xn} is non-decreasing

We will use induction to prove that {xn} is non-decreasing, by proving that xn+1 ≥ xn

for each integer n ≥ 1. First, note that since
√
k ≥ 0,

x2 =

√
k +

√
k ≥

√
k = x1 .

Next, assume that xn+1 ≥ xn for some integer n ≥ 1. Then

xn+2 =
√

k + xn+1 ≥
√
k + xn = xn+1 .

By induction, it follows that xn+1 ≥ xn for each integer n ≥ 1. Therefore, {xn} is
non-decreasing.

3.2 {xn} has an upper bound

Define M = 1
2
+
√

k + 1
4
. We will use induction to prove that {xn} has an upper bound

by proving that xn ≤ M for each integer n ≥ 1. First, note that since k ≥ 0, we know

that
√

k + 1
4
>

√
k, and

x1 =
√
k ≤ 1

2
+

√
k +

1

4
= M .

Next, assume that xn ≤ M for some integer n ≥ 1. Since M = 1
2
+
√

k + 1
4
,

M2 =

(
1

2
+

√
k +

1

4

)2

= k +
1

2
+

√
k +

1

4
= k +M .
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It follows that M =
√
k +M since M ≥ 0. Then, by the assumption xn ≤ M ,

xn+1 =
√

k + xn ≤
√
k +M = M .

By induction, xn ≤ M for all integers n ≥ 1; that is, {xn} is bounded above by M .

We have now completed our two-step proof and conclude that {xn} is convergent.

4 Addressing two unique cases

We will now address the two unique cases where N = 0 and N = 1. For N = 0,

0 =

√
0 +

√
0 +

√
0 + · · · .

The case in which N = 1 is more interesting. Assume that we have

1 =

√
k +

√
k +

√
k + · · ·

for some non-negative number k. Then square both sides:

1 = k +

√
k +

√
k +

√
k + · · · = k + 1 .

We obtain k = 0 as our solution. However, this leads to the contradiction

1 =

√
0 +

√
0 +

√
0 + · · · = 0 ,

so our assumption is false. Therefore, 1 cannot be written as
√

k +
√

k +
√
k + · · · for

any non-negative integer k.
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5 The proof

We will now show that any real number N > 1 can be expressed as an infinitely nested

root of the form
√

k +
√

k +
√
k + · · · for some non-negative constant k.

In particular, define
k = N(N − 1) = N2 −N . (1)

Then N2 = k +N , so

N =
√
k +N =

√
k +

√
k +N = · · · =

√
k +

√
k +

√
k + · · · ,

which is what we wanted to prove. Also note that for non-negative k, we have N2 −
N ≥ 0, and as such, N ≤ 0 or N ≥ 1. As N is non-negative, we can take the solution of
this inequality to be N = 0 or N ≥ 1. However, following the unique cases addressed
in Section 4, we see that the case N = 1 leads to a contradiction, so we can conclude
that any real number N > 1 can be expressed in the stated form.

6 Application

Suppose we want to express the number N = 5 as an infinitely nested square root

of the form
√

k +
√

k +
√
k + · · · for some non-negative constant k. We can now use

Equation (1) from Section 5 above to define

k = N(N − 1) = 5× (5− 1) = 20 .

Then

5 =

√
20 +

√
20 +

√
20 + · · · .

A quick punch of the calculator would suggest that the above equation is indeed valid.

7 The golden ratio

Now, you may be wondering what the golden ratio ϕ has to do with this. Surprisingly
enough, the nested square roots discussed in this paper yield a beautiful expression for
the golden ratio. As you might know, the golden ratio is obtained from the following
quadratic equation:

ϕ2 = ϕ+ 1

or, equivalently, 1 = ϕ(ϕ−1). This is similar in form to Equation (1). Indeed, by setting
N = ϕ and k = 1, we have:

ϕ =

√
1 +

√
1 +

√
1 + · · · .
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8 Conclusion

I believe that infinitely nested square roots are truly beautiful. We’ve seen clearly from
this example that any non-negative number, excluding numbers greater than 0 but
lesser than or equal to 1, can be expressed as an infinitely nested square root with form√
k +

√
k +

√
k + · · · for some non-negative constant k. My work showcases just one

of many kinds of infinitely nested radicals, and there is a great deal of exploration that
can be done beyond this; see for instance [1]. Whether it’s alternating signs within the
radicals, or more complex radicals nested within, or roots of different degrees, the sky
is the limit.
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