Parabola Volume 58, Issue 2 (2022)

Non-negative numbers and infinitely nested square roots Alaric Pow Ian-Jun[1](#page-0-0)

1 Introduction

The study of square roots has always been fascinating to me. I've always loved solving mathematics problems that heavily involved square root manipulation; it's pretty elegant when a complicated square root expression, which is typically not computable to exact precision, can be broken down into a result that most of us can understand. My article shows you the beauty of square roots, and how non-negative numbers can be expressed as infinitely nested square roots. A decent understanding of sequences, mathematical proofs and, of course, square roots is an important prerequisite before reading my paper.

2 What I seek to prove

Let's get a little more technical. In my paper, I prove that any number greater than 1 can be expressed as an infinitely nested square root of the form $\sqrt{k + \sqrt{k + 1}}$ $\overline{}$ $k+\cdots$ for some non-negative constant k . To put it more formally,

"For any real number $N > 1$,

 $N =$ ¹ $k+\sqrt{k+1}$ √ $k + \cdots$ for some non-negative constant k."

2.1 The necessary proof of convergence

Before we make sense of the expression, we need to show that for any non-negative constant k , $\sqrt{k + \sqrt{k +$ √ $k + \cdots$ is convergent. The proof of convergence would remove any ambiguity related to infinity.

2.2 Addressing the cases $N = 0$ and $N = 1$

After our proof of convergence, I will be addressing the cases where $N = 0$ and $N = 1$. These cases need to be considered separately, for reasons you will discover as you delve deeper into the paper.

¹ Alaric Pow is a student from Singapore who has graduated from Hwa Chong Institution.

2.3 The proof

Once we get that out of the way, we'll go into the exact details of how any real number greater than 1 can be expressed as an infinitely nested square root of the form $\sqrt{k+\sqrt{k+}}$ √ $k + \cdots$ for some non-negative constant $k.$

3 Convergence

Let's begin by proving that for any non-negative constant k , $\sqrt{k + \sqrt{k +}}$ $\overline{}$ $k + \cdots$ is convergent. To do this, let's use a recurrence relation to model this expression:

$$
x_1 = \sqrt{k} \qquad \text{and} \qquad x_{n+1} = \sqrt{k + x_n} \, .
$$

We now need to prove the convergence of $\{x_n\}$ as n approaches infinity. This will be done in a two-step process - firstly, we'll show that $\{x_n\}$ is non-decreasing and, next, we'll show that $\{x_n\}$ is bounded. By the Monotone Convergence Theorem, $\{x_n\}$ is convergent if these two conditions are proven.

3.1 {xn} **is non-decreasing**

We will use induction to prove that $\{x_n\}$ is non-decreasing, by proving that $x_{n+1} \geq x_n$ we will use induction to prove that $\{x_n\}$ is non-dector each integer $n \geq 1$. First, note that since $\sqrt{k} \geq 0$,

$$
x_2 = \sqrt{k + \sqrt{k}} \ge \sqrt{k} = x_1.
$$

Next, assume that $x_{n+1} \geq x_n$ for some integer $n \geq 1$. Then

$$
x_{n+2} = \sqrt{k + x_{n+1}} \ge \sqrt{k + x_n} = x_{n+1} \, .
$$

By induction, it follows that $x_{n+1} \geq x_n$ for each integer $n \geq 1$. Therefore, $\{x_n\}$ is non-decreasing.

3.2 {xn} **has an upper bound**

Define $M = \frac{1}{2} + \sqrt{k + \frac{1}{4}}$ $\frac{1}{4}$. We will use induction to prove that $\{x_n\}$ has an upper bound by proving that $x_n \leq M$ for each integer $n \geq 1$. First, note that since $k \geq 0$, we know that $\sqrt{k+\frac{1}{4}} > \sqrt{k}$, and

$$
x_1 = \sqrt{k} \le \frac{1}{2} + \sqrt{k + \frac{1}{4}} = M.
$$

Next, assume that $x_n\leq M$ for some integer $n\geq 1.$ Since $M=\frac{1}{2}+\sqrt{k+\frac{1}{4}}$ $\frac{1}{4}$,

$$
M^{2} = \left(\frac{1}{2} + \sqrt{k + \frac{1}{4}}\right)^{2} = k + \frac{1}{2} + \sqrt{k + \frac{1}{4}} = k + M.
$$

It follows that $M =$ √ $k + M$ since $M \geq 0$. Then, by the assumption $x_n \leq M$,

$$
x_{n+1} = \sqrt{k + x_n} \le \sqrt{k + M} = M.
$$

By induction, $x_n \leq M$ for all integers $n \geq 1$; that is, $\{x_n\}$ is bounded above by M.

We have now completed our two-step proof and conclude that $\{x_n\}$ is convergent.

4 Addressing two unique cases

We will now address the two unique cases where $N = 0$ and $N = 1$. For $N = 0$,

$$
0 = \sqrt{0 + \sqrt{0 + \sqrt{0 + \cdots}}}.
$$

The case in which $N = 1$ is more interesting. Assume that we have

$$
1 = \sqrt{k + \sqrt{k + \sqrt{k + \dotsb}}}
$$

for some non-negative number k . Then square both sides:

$$
1 = k + \sqrt{k + \sqrt{k + \sqrt{k + \cdots}}} = k + 1.
$$

We obtain $k = 0$ as our solution. However, this leads to the contradiction

$$
1 = \sqrt{0 + \sqrt{0 + \sqrt{0 + \dots}}} = 0,
$$

so our assumption is false. Therefore, 1 cannot be written as $\sqrt{k + \sqrt{k +}}$ $\overline{}$ $k + \cdots$ for any non-negative integer k .

5 The proof

We will now show that any real number $N > 1$ can be expressed as an infinitely nested root of the form $\sqrt{k + \sqrt{k + \frac{2}{n}}}$ √ $k + \cdots$ for some non-negative constant $k.$

In particular, define

$$
k = N(N - 1) = N^2 - N.
$$
 (1)

Then $N^2 = k + N$, so

$$
N = \sqrt{k+N} = \sqrt{k+\sqrt{k+N}} = \cdots = \sqrt{k+\sqrt{k+\sqrt{k+\cdots}}},
$$

which is what we wanted to prove. Also note that for non-negative k, we have N^2 − $N \geq 0$, and as such, $N \leq 0$ or $N \geq 1$. As N is non-negative, we can take the solution of this inequality to be $N = 0$ or $N \geq 1$. However, following the unique cases addressed in Section 4, we see that the case $N = 1$ leads to a contradiction, so we can conclude that any real number $N > 1$ can be expressed in the stated form.

6 Application

Suppose we want to express the number $N = 5$ as an infinitely nested square root of the form $\sqrt{k + \sqrt{k +$ $\frac{1}{\sqrt{2}}$ $k + \cdots$ for some non-negative constant k . We can now use Equation [\(1\)](#page-3-0) from Section 5 above to define

$$
k = N(N - 1) = 5 \times (5 - 1) = 20.
$$

Then

$$
5 = \sqrt{20 + \sqrt{20 + \sqrt{20 + \dots}}}
$$

A quick punch of the calculator would suggest that the above equation is indeed valid.

7 The golden ratio

Now, you may be wondering what the golden ratio ϕ has to do with this. Surprisingly enough, the nested square roots discussed in this paper yield a beautiful expression for the golden ratio. As you might know, the golden ratio is obtained from the following quadratic equation:

$$
\phi^2 = \phi + 1
$$

or, equivalently, $1 = \phi(\phi - 1)$. This is similar in form to Equation [\(1\)](#page-3-0). Indeed, by setting $N = \phi$ and $k = 1$, we have:

$$
\phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}.
$$

8 Conclusion

I believe that infinitely nested square roots are truly beautiful. We've seen clearly from this example that any non-negative number, excluding numbers greater than 0 but lesser than or equal to 1, can be expressed as an infinitely nested square root with form $\sqrt{k + \sqrt{k +$ √ $k + \cdots$ for some non-negative constant k. My work showcases just one of many kinds of infinitely nested radicals, and there is a great deal of exploration that can be done beyond this; see for instance [\[1\]](#page-4-0). Whether it's alternating signs within the radicals, or more complex radicals nested within, or roots of different degrees, the sky is the limit.

References

[1] R. Schneider, [Fibonacci numbers and the golden ratio,](https://www.parabola.unsw.edu.au/2010-2019/volume-52-2016/issue-3/article/fibonacci-numbers-and-golden-ratio) Parabola **52 (3)** (2016).